NASA General Working Paper No. 10 046

AN ANALYSIS OF A CHARRING ABLATION THERMAL PROTECTION SYSTEM

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION MANNED SPACECRAFT CENTER HOUSTON, TEXAS

June 4, 1965

Reproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE
Springfield, Va. 22151

AN ANALYSIS OF A CHARRING ABLATION THERMAL PROTECTION SYSTEM

4 June 1965

This document has been approved for public release and sale.

NASA GENERAL WORKING PAPER NO. 10 046

AN ANALYSIS OF A CHARRING ABLATION THERMAL PROTECTION SYSTEM

Prepared by:

Donald M. Curry

AST, Thermal Protection Systems Section

Authorized for Distribution:

Assistant Director for Engineering and Development

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
MANNED SPACECRAFT CENTER
HOUSTON, TEXAS

June 4, 1965

CONTENTS

Section .	Page
SUMMARY	ı .
INTRODUCTION	1
SYMBOLS	2
PROGRAM DESCRIPTION	4
ANALYSIS	9
Derivation of Equations	10
Discussion of Assumptions	23
CUSTOMER UTILIZATION INSTRUCTIONS	2 6
Introduction	2 6
Input Nomenclature	27
Input Data Card Preparation	32
Program Output Information	38
PROGRAM VERIFICATION	40
CONCLUDING REMARKS	42
REFERENCES	43
APPENDIX A - SAMPLE PROBLEM	45
APPENDIX B - PROGRAM IN FORTRAN STATEMENTS	47
APPENDIX C - PROGRAM TERMINOLOGY	85
APPENDIX D - GENERAL FLOW CHART	95

TABLES

Table		Page
I	SAMPLE PROBLEM INPUT	
	(a) Coding sheet	97 100
II	SAMPLE PROBLEM OUTPUT	102
	FIGURES	
Figure		Page
1	Radiation temperature approximation error	105
2	Schematic diagram of charring ablator thermal protection system	106
3	Thermogravimetric data for typical charring ablation material	107
14	Charring material property variation used as input to STAB II	108
5.	Comparison of temperature histories for nonablating steel slab (pure conduction)	109
6	Comparison of temperature histories for moving boundary model	110
7	Comparison of temperature histories for typical charring ablator	111
8	Plot program surface recession curve from typical charring ablator test case	112
9	Plot program bondline temperature curve from typical charring ablator test case	113
10	Plot program isotherm curves from typical charring ablator test case	114

AN ANALYSIS OF A CHARRING ABLATION

THERMAL PROTECTION SYSTEM

By Donald M. Curry

SUMMARY

An analytical model is presented for predicting the transient onedimensional thermal performance of a charring ablator heat protection system when exposed to a hyperthermal environment. The heat protection system is considered to consist of an ablation material and backup structure. The ablating material is further considered to consist of three distinct regions or zones; char, reacting, and virgin material.

A Fortran IV digital computer program (STAB II) utilizing an implicit finite difference formulation has been written for the IBM 7094/40 computer system. The program considers one ablating material and a maximum of 12 backup materials with conduction or radiation and/or convection allowed between materials. Thermal properties of all materials are temperature dependent with the properties of the charring material also state dependent.

The governing differential equations and their implicit finite difference formulation are presented. The program input and output is described in detail. Also, a comparison of theoretical and experimental results is shown.

INTRODUCTION

The analysis and design of thermal protection systems for entry into an atmospheric environment has resulted in a voluminous amount of literature on the general subject of ablation. (See refs. 1 and 2 for a survey of information on ablation.) The ablation materials may generally be classified into three categories; subliming, melting and vaporizing, and charring. The charring ablator normally provides the most efficient thermal protection shield for the major portion of a manned entry vehicle. This report describes a method for predicting the thermal response of a typical charring ablation material. The

response of a charring material to a hyperthermal environment is extremely complex and the mathematical model presented to analyze the transient behavior of the material contains simplifying assumptions and approximations necessary to afford even a numerical solution.

Section 2

The equations derived in this analysis have been programed in Fortran IV for an IBM 7094/40 computer system. The numerical formulation of this digital program, designated STAB II, is such that an implicit solution is obtained. The input, output, and various program options are discussed in detail.

The thermal response of a typical charring material as predicted by STAB II is compared with arc tunnel test results. As shown, the predicted in-depth temperatures are in excellent agreement with the measured values.

The author wishes to express his appreciation to Barbara D. Arabian, Bette J. Stafford, and Davis D. Bland for their assistance in the preparation of the digital computer program.

SYMBOLS

C _p	specific heat
F	exterior view factor
$^{ m F}$ env	view factor-emissivity product to cabin environment
$^{ m H}$ đ	heat of virgin material degradation
· н _Т	total enthalpy
H _w	wall enthalpy
^H 300	enthalpy of air at 300° K
h	film coefficient between backup materials
h env	film coefficient between last backup material and cabin environment
k	thermal conductivity
^m с	mass loss rate of char material

 \dot{m}_{g} gas ablation rate

NP number of nodes in ablation material

 $\dot{q}_{c\ Blow}$ hot wall convective heat flux with blowing

 \dot{q}_{comb} heat flux due to combustion

q cold wall convective heat flux without blowing

 $\dot{q}_{\rm rad}$ radiation heat flux

S surface recession depth

surface recession rate

T temperature of node beginning of time step

 ${\bf T}_{\rm env} \qquad \quad {\bf cabin \ environment \ temperature}$

T' temperature of node at end of time step

T radiation heat sink temperature

VL thickness of ablation material

 $\triangle H_{\mathbf{c}}$ heat of combustion per unit weight of char

 $\triangle X$ thickness of a node

 $\triangle\theta$ time step $(\theta' - \theta)$

ε emissivity of material

1 transpiration cooling efficiency

 θ initial time

 θ final time

ρ density

σ Stephan-Boltzman constant

Subscripts:

- c charred state
- i node number
- j material number
- v virgin state

PROGRAM DESCRIPTION

The following general requirements were established before writing a digital computer program to analyze a charring ablation system:

- a. Stability of the equation for all applications.
- b. Machine running time short enough to make use of the program economically feasible (a minimum of turn around time per problem).
 - c. A minimum of input per problem.
- d. A wide variety of boundary conditions for application to both trajectory data and ground or flight test data analysis.

STAB II has been formulated in Fortran IV to analyze the transient thermal performance of a charring ablator heat protection system. The program considers one ablating material and up to 12 different backup materials with or without air gaps. Pure conduction or radiation and/or convection between backup materials is allowed. The ablation material may be divided into a maximum of 50 nodes and each backup material may be subdivided into a maximum of 10 nodes. The thermal properties of the materials are in tabular form and are temperature dependent. The ablation material is also dependent upon its state, that is, fully charred, partially charred, et cetera.

The following surface boundary condition options are provided:

- a. Cold wall convective and radiative heat flux tables as a function of time. These components are specified separately, since mass transfer at the surface blocks part of the convective heating, but in general, has no effect on the radiant heating.
 - b. Surface temperature as a function of time.

c. Surface recession as a function of temperature or time. Surface recession as a function of temperature and pressure is also available.

Heat loss to the interior environment for the last node of the backup structure can be specified by two methods:

- a. Conduction into the node and radiation and/or convection loss to the interior environment.
 - b. Conduction into the node and adiabatic wall.

Jon march

The STAB II numerical formulation of the equations describing the response of the heat shield is such that an implicit solution has been obtained. It is well known that numerical solutions of partial differential equations are subject to several different types of errors. The first of these is the truncation error, due to the use of a finite subdivision. This error may be reduced by simply choosing a smaller subdivision, ΔX . The exact values are approached more and more closely as ΔX decreases. The second kind of error is the numerical, or round-off error. The way in which this numerical error grows or decays with time determines the stability of the difference equation.

To illustrate the differences in the explicit and implicit equation form, consider a nonablating homogeneous solid. The one-dimensional Fourier conduction equation, neglecting any heat generation terms, is:

$$\frac{\partial}{\partial X} \left(k \frac{\partial T}{\partial X} \right) = \rho c_p \frac{\partial T}{\partial \theta} \tag{1}$$

The finite difference form of equation (1) written in the conventional forward time step or explicit form for the ith node is

$$\frac{\left(\mathbb{T}_{\mathbf{i}-\mathbf{l}} - \mathbb{T}_{\mathbf{i}}\right)}{\frac{\Delta X}{2k_{\mathbf{i}-\mathbf{l}}} + \frac{\Delta X}{2k_{\mathbf{i}}}} - \frac{\left(\mathbb{T}_{\mathbf{i}} - \mathbb{T}_{\mathbf{i}+\mathbf{l}}\right)}{\frac{\Delta X}{2k_{\mathbf{i}}} + \frac{\Delta X}{2k_{\mathbf{i}+\mathbf{l}}}} = \rho c_{\mathbf{p}} \frac{\Delta X \left(\mathbb{T}_{\mathbf{i}}^{'} - \mathbb{T}_{\mathbf{i}}\right)}{\Delta \theta}$$
(2)

where the prime superscript denotes values at the end of the time step,

$$\triangle \theta = \theta' - \theta$$

For explicit conduction solutions, the following stability criteria has been established:

$$\frac{\rho c_p}{k} \frac{(\Delta X)^2}{\Delta \theta} \ge 2$$

which places an upper limit on the time step $\Delta\theta$ for a fixed truncation error. This criteria can require a prohibitive amount of machine time.

Liebmann (ref. 3) advocated a solution of the equation which does not require this stability criteria. The finite difference equations are written in a backward time step form which affords an implicit solution.

The implicit (backward time step) difference form of equation (1) for the ith node is:

$$\frac{\left(\mathbf{T_{i-1}} - \mathbf{T_{i}}\right)}{\frac{\Delta X}{2k_{i-1}} + \frac{\Delta X}{2k_{i}}} - \frac{\left(\mathbf{T_{i}} - \mathbf{T_{i+1}}\right)}{\frac{\Delta X}{2k_{i}} + \frac{\Delta X}{2k_{i+1}}} = \rho c_{p} \frac{\Delta X \left(\mathbf{T_{i}} - \mathbf{T_{i}}\right)}{\Delta \theta}$$
(3)

Equation (3) uses the temperature differences at the end of the finite time interval instead of the beginning, as in the explicit method, equation (2). T_i is the only known temperature in equation (3), but there are corresponding equations for each point in the system and all are solved simultaneously yielding the temperature at each node.

Collecting all unknown temperatures on the left side of the equation and the known temperature on the right side, equation (3) is:

$$\left(\frac{\frac{1}{\Delta X}}{\frac{\Delta X}{2k_{i-1}} + \frac{\Delta X}{2k_{i}}}\right) T_{i-1}' - \left(\frac{\frac{1}{\Delta X}}{\frac{\Delta X}{2k_{i}} + \frac{\Delta X}{2k_{i}}} + \frac{\frac{1}{\Delta X}}{\frac{\Delta X}{2k_{i}} + \frac{\Delta X}{2k_{i+1}}}\right) T_{i-1}' + \left(\frac{\frac{1}{\Delta X}}{\frac{\Delta X}{2k_{i}} + \frac{\Delta X}{2k_{i+1}}}\right) T_{i-1}' = - \left(\frac{\rho_{i} c_{p_{i}} \Delta X}{\Delta \theta}\right) T_{i} \tag{4}$$

Equation (4) is in the form of:

$$AT_{i-1}' + BT_{i}' + CT_{i+1}' = D$$
 (5)

STAB II generates such an equation for each node in the system.

Since radiation is an important mode of heat transfer in charring ablative systems, a problem is encountered in any equation containing a radiation term. The radiation heat flux, written in a backward difference form is:

$$\dot{q}_{r} = Fe\sigma \left(T_{i}^{'4} - T_{\infty}^{4}\right) \tag{6}$$

This term cannot be used in an implicit solution since the unknown temperature T' is to the 4th power. The 4th power unknown can be eliminated by the following linearization:

$$\left(T_{\underline{i}}^{'}\right)^{\underline{i}} = \left(T_{\underline{i}} + \Delta T\right)^{\underline{i}} = T_{\underline{i}}^{\underline{i}} \left(1 + \frac{\Delta T}{T_{\underline{i}}}\right)^{\underline{i}} \tag{7}$$

where

$$\Delta T = T_1' - T_1$$

let

$$X \equiv \frac{\Delta T}{T_1}$$

and rewrite equation (7)

$$\left(\mathbf{T}_{\mathbf{i}}^{'}\right)^{\mathbf{i}} = \left(\mathbf{T}_{\mathbf{i}}\right)^{\mathbf{i}} \left(\mathbf{1} + \mathbf{X}\right)^{\mathbf{i}} \tag{8}$$

If X has an absolute value near zero, the following is true:

$$\left(1+X\right)^{1/4} \cong 1+4X \tag{9}$$

Now substituting (9) into (8)

$$(T_{\mathbf{i}})^{4} \cong (T_{\mathbf{i}})^{4} (1 + 4X) = (T_{\mathbf{i}})^{4} \left(1 + 4\frac{\Delta T}{T_{\mathbf{i}}}\right) (T_{\mathbf{i}})^{4}$$

$$\cong 4T_{\mathbf{i}}^{3} T_{\mathbf{i}}^{'} - 3T_{\mathbf{i}}^{4}$$

$$(10)$$

Equation (10) is a linearized approximation of equation (7) in which the unknown temperature is only to the first power. The assumption in equation (10) is that $\Delta T/T_1$ has an absolute value near zero. Figure 1 is a plot of the error obtained when (1 + 4X) is substituted for $(1 + X)^{1/4}$. For most ablation problems where the surface temperature is high and the radiation losses are significant, the value of $\Delta T/T_1$ can easily be controlled to values of less than ± 0.1 .

Therefore, equation (6) can now be written

$$\dot{q}_{r} = Fe\sigma(4T_{i}^{3}T_{i}^{'} - 3T_{i}^{4} - T_{\infty}^{4})$$
 (11)

Using the linearized approximation for the radiation terms, the resulting system of implicit difference equations constitute a tridiagonal matrix of the following form:

Gauss' elimination method, as discussed in reference 4, is applied to solve the system of equations. This method affords a fast and accurate solution for matrices containing a dominant diagonal. The solution of this matrix gives the temperature of each node in the system for the next future time step. The entire process is repeated for each time step throughout the run, giving a time history of the temperature at each node.

Using this method of solution, residual errors in the temperature computations at the beginning of the time step are distributed throughout the entire system of nodal equations and tend to cancel out rapidly. The principle advantage in using the implicit method is a set of equations that are mathematically stable in time and distance. Therefore, the magnitude of the time step is not limited by a convergence criteria. However, care must be taken in selecting the magnitude of the time step in order to minimize truncation errors when the second derivative of temperature with respect to time is large. A similar approach is used

to minimize truncation errors in distance by choosing small node dimensions in locations where large second derivatives of temperature with respect to distance are expected.

In the case of a char forming ablative heat shield where approximately 80 percent of the heat is reradiated, instability can arise in taking large time steps such that the temperature of the surface node can start oscillating on successive time steps on achieving a balance between the radiation source and sink. Therefore, in ablation problems in which the surface node loses a large percentage of heat by radiation, oscillations of the node can be damped out by taking small time steps during conditions of high heat flux and near radiation equilibrium temperatures.

ANALYSIS

Figure 2 is a schematic of the thermal protection system that is to be analyzed. A receding surface has been assumed with the formation of a residual char layer and reaction zone. The thermal protection system is composed of 1 charring material and a maximum of 12 different backup materials with or without air gaps. The analysis is such that the entire system may be composed of noncharring materials. The thermal properties of all materials are temperature dependent; also, the charring material properties are state dependent (fully or partially charred).

The response of charring ablation heat shields to a hyperthermal environment is extremely complex, and simplifying assumptions and approximations are necessary to afford a numerical solution. The following assumptions and approximations are utilized in the equations developed in this report:

- a. The material decomposes from the virgin state to a porous char layer in the reaction zone.
- b. The reaction zone can be defined by an upper and lower temperature limit.
- c. The gas generated within the reaction zone is assumed to pass out of the structure with no pressure loss. No gas accumulation within a node is allowed.
- d. Local thermal equilibrium is maintained between the gas and solid.
- e. The gas undergoes no further chemical reaction within the residual material after having been formed.

Derivation of Equations

The equations are derived for a moving boundary coordinate system, where the front face is the moving surface (ref. 5). With this system, the ablating material is divided into a <u>fixed</u> number of nodes with a thickness (ΔX) which depends on the instantaneous location of the front face. The surface recession is handled in a continuous manner eliminating the need of throwing away or lumping off of nodes.

The physical model for the front surface including all heating terms is shown below

The energy equation at the front char surface is:

$$\frac{d}{d\theta} \left(\frac{1}{2} \Delta X \; \rho_{1} c_{p_{1}} T_{1} \right) = \frac{1}{2} \Delta X \; \rho_{1} c_{p_{1}} \frac{dT_{1}}{d\theta} + \frac{1}{2} \; \rho_{1} c_{p_{1}} T_{1} \frac{d(\Delta X)}{d\theta}$$

$$= Q_{in} + \dot{m}_{g_{2}} c_{p_{2}} T_{2}' + \rho_{2} \dot{S}_{2} c_{p_{2}} T_{2}' - \dot{m}_{g_{1}} c_{p_{1}} T_{1}'$$

$$- \rho_{1} c_{p_{1}} \dot{S}_{1} T_{1}' - k_{1-2} \left(\frac{\Delta T}{\Delta X} \right) \tag{12}$$

where

$$Q_{in} = \dot{q}_{c \text{ Blow}} + \dot{q}_{rad} + \dot{q}_{comb} - Feo\left(T_1^{\mu} - T_{\infty}^{\mu}\right)$$

and

$$\frac{d(\Delta X)}{d\theta} = \frac{d}{d\theta} \left(\frac{VL - S}{NP - 1} \right) = -\frac{\dot{S}}{NP - 1}$$

where S is the linear surface recession rate, NP the total number of nodes in the ablation material of thickness VL.

Rewriting equation (12) in implicit finite difference form:

$$Q_{\text{in}} + \dot{m}_{g_{2}} c_{p_{2}} T_{2}^{'} - \dot{m}_{g_{1}} c_{p_{1}} T_{1}^{'} - \dot{S} \rho_{1} c_{p_{1}} T_{1}^{'} - \frac{\left(T_{1}^{'} - T_{2}^{'}\right)}{\frac{\Delta X}{2k_{1}} + \frac{\Delta X}{2k_{2}}}$$

$$+ \rho_{2} c_{p_{2}} \dot{S} \left(\frac{NP - 1.5}{NP - 1.0}\right) T_{2}^{'} = \rho_{1} c_{p_{1}} \frac{\Delta X}{2} \left(\frac{T_{1}^{'} - T_{1}}{\Delta \theta}\right)$$

$$- \frac{1}{2} \rho_{1} c_{p_{1}} T_{1}^{'} \left(\frac{\dot{S}}{NP - 1}\right)$$
 (12a)

Rearranging and collecting terms:

$$-\left(\dot{m}_{g_{1}}c_{p_{1}}+\dot{s}\rho_{1}c_{p_{1}}+\rho_{1}c_{p_{1}}\frac{\Delta X}{2\Delta\theta}+\frac{1}{\frac{\Delta X}{2k_{1}}+\frac{\Delta X}{2k_{2}}}-\frac{1}{2}\rho_{1}c_{p_{1}}\left(\frac{\dot{s}}{NP-1}\right)\right)T_{1}'$$

$$+\left(\dot{m}_{g_{2}}c_{p_{2}}+\frac{1}{\frac{\Delta X}{2k_{1}}+\frac{\Delta X}{2k_{2}}}+\rho_{2}c_{p_{2}}\dot{s}\left(\frac{NP-1.5}{NP-1.0}\right)\right)T_{2}'$$

$$=-\rho_{1}c_{p_{1}}\frac{\Delta X}{2\Delta\theta}T_{1}-Q_{in}$$
(12b)

The physical model for interior points in the mature char zone, including all heating terms, is shown below:

The energy equation for interior points in the char matrix is:

$$\frac{\mathrm{d}}{\mathrm{d}\theta} \left(\triangle X_{\mathbf{i}} \rho_{\mathbf{i}} c_{p_{\mathbf{i}}}^{T} \mathbf{i} \right) = \triangle X \rho_{\mathbf{i}} c_{p_{\mathbf{i}}}^{d} \frac{\mathrm{d}T_{\mathbf{i}}}{\mathrm{d}\theta} - \rho_{\mathbf{i}} c_{p_{\mathbf{i}}}^{T} \mathbf{i} \left(\frac{\dot{\mathbf{S}}}{NP - 1} \right)$$

$$=\dot{m}_{g_{i+1}}c_{p_{i+1}}T_{i+1}'+k_{i-1,i}\left(\frac{\Delta T}{\Delta X}\right)+\rho_{i+1}c_{p_{i+1}}\dot{s}\left(\frac{NP-i-\frac{1}{2}}{NP-1}\right)T_{i+1}'$$

$$-k_{i,i+1}\left(\frac{\Delta T}{\Delta X}\right) - \dot{m}_{g_{i}} e_{p_{i}} T_{i} - \rho_{i} e_{p_{i}} \dot{s} \left(\frac{NP - i + \frac{1}{2}}{NP - 1}\right) T_{i}$$

(13)

Putting equation (13) in an implicit finite difference form:

$$\left(\frac{\frac{1}{\Delta X}}{2k_{i-1}} + \frac{\Delta X}{2k_{i}}\right) T_{i-1} - \left(\hat{m}_{g_{i}} e_{p_{i}} + \rho_{i} e_{p_{i}} \dot{S} \left(\frac{NP - i + \frac{1}{2}}{NP - 1}\right) + \frac{1}{\frac{\Delta X}{2k_{i-1}} + \frac{\Delta X}{2k_{i}}} + \frac{1}{\frac{\Delta X}{2k_{i}}} + \frac{1}{\frac{\Delta X}{2k_{i}}} + \rho_{i} e_{p_{i}} \dot{\Delta} \dot{S} - \rho_{i} e_{p_{i}} \left(\frac{\dot{S}}{NP - 1}\right) T_{i}^{'} + \left(\hat{m}_{g_{i+1}} e_{p_{i+1}} + \frac{1}{\frac{\Delta X}{2k_{i}} + \frac{\Delta X}{2k_{i+1}}} + \rho_{i+1} e_{p_{i+1}} \dot{S} \left(\frac{NP - i - \frac{1}{2}}{NP - 1}\right) \right) T_{i+1}^{'} + \frac{1}{2k_{i}} + \frac{1}{2k_{i}} + \frac{1}{2k_{i+1}} + \rho_{i+1} e_{p_{i+1}} \dot{S} \left(\frac{NP - i - \frac{1}{2}}{NP - 1}\right) T_{i+1}^{'} + \frac{1}{2k_{i}} + \frac{1}{2k_{i}} + \frac{1}{2k_{i}} + \frac{1}{2k_{i+1}} + \frac{1}{2k_{i+1}} + \frac{1}{2k_{i+1}} e_{p_{i+1}} \dot{S} \left(\frac{NP - i - \frac{1}{2}}{NP - 1}\right) \right) T_{i+1}^{'}$$

$$= -\rho_{i} e_{p_{i}} \dot{\Delta} \dot{S} T_{i}$$

$$= -\rho_{i} e_{p_{i}} \dot{\Delta} \dot{S} T_{i}$$

$$(13a)$$

NOTE: In the mature char zone, no internal gaseous ablation products are assumed to form. The reaction zone is the source for the formation of the internal gaseous products. Therefore, in equations (12) and (13), $\dot{m}_{g_i} = \dot{m}_{i+1}$

The physical model for nodes in the reaction zone is identical to schematic shown for the interior nodes in the char except for considering the energy absorbed in formation of the gaseous ablation products. The heat balance equation for a node in the reaction zone is:

$$\frac{d}{d\theta} \left(\Delta X \rho_{i} c_{p_{i}} T_{i} \right) = \Delta X \rho_{i} c_{p_{i}} \frac{dT_{i}}{d\theta} - \rho_{i} c_{p_{i}} T_{i}' \left(\frac{\dot{S}}{NP - 1} \right) - \left(\dot{m}_{g_{i}} - \dot{m}_{g_{i+1}} \right) H_{d}$$

$$= \dot{m}_{g_{i+1}} c_{p_{i+1}} T_{i+1}' + k_{i-1,i} \left(\frac{\Delta T}{\Delta X} \right) + \rho_{i+1} c_{p_{i+1}} \dot{S} \left(\frac{NP - i - \frac{1}{2}}{NP - 1} \right) T_{i+1}'$$

$$- k_{i,i+1} \left(\frac{\Delta T}{\Delta X} \right) - \dot{m}_{g_{i}} c_{p_{i}} T_{i}' - \rho_{i} c_{p_{i}} \dot{S} \left(\frac{NP - i + \frac{1}{2}}{NP - 1} \right) T_{i}'$$
(14)

rearranging:

$$\left(\frac{1}{\frac{\Delta X}{2k_{i-1}}} + \frac{\Delta X}{2k_{i}}\right)^{T_{i-1}'} - \left(\dot{m}_{g_{i}}^{c} c_{p_{i}} + \rho_{i} c_{p_{i}} \dot{s} \left(\frac{NP - i + \frac{1}{2}}{NP - 1}\right) + \frac{1}{\frac{\Delta X}{2k_{i-1}}} + \frac{\Delta X}{2k_{i}}\right) + \frac{1}{\frac{\Delta X}{2k_{i}}} + \rho_{i}^{c} c_{p_{i}} \left(\frac{\Delta X}{\Delta \theta} - \rho_{i}^{c} c_{p_{i}} \left(\frac{\dot{s}}{NP - 1}\right)\right) T_{i}' + \left(\dot{m}_{g_{i+1}}^{c} c_{p_{i+1}}\right) + \frac{1}{\frac{\Delta X}{2k_{i}}} + \frac{1}{\frac{\Delta X}{2k_{i+1}}} + \rho_{i+1}^{c} c_{p_{i+1}} \dot{s} \left(\frac{NP - i - \frac{1}{2}}{NP - 1}\right)\right) T_{i+1}' + \frac{1}{2k_{i}} + \frac{1}{2k_{i+1}} + \rho_{i+1}^{c} c_{p_{i+1}} \dot{s} \left(\frac{NP - i - \frac{1}{2}}{NP - 1}\right) T_{i+1}' + \frac{1}{2k_{i}} + \frac{1}{2k_{i}} + \frac{1}{2k_{i+1}} + \rho_{i+1}^{c} c_{p_{i+1}} \dot{s} \left(\frac{NP - i - \frac{1}{2}}{NP - 1}\right) T_{i+1}' + \frac{1}{2k_{i}} +$$

2

The physical model for the interface between the reaction zone and virgin material is illustrated below:

The heat balance equation for this node is:

$$\frac{d}{d\theta} \left(\Delta X \rho_{\mathbf{i}} c_{\mathbf{p_{i}}} T_{\mathbf{i}} \right) = \Delta X \rho_{\mathbf{i}} c_{\mathbf{p_{i}}} \frac{dT_{\mathbf{i}}}{d\theta} - \rho_{\mathbf{i}} c_{\mathbf{p_{i}}} T_{\mathbf{i}}' \left(\frac{\dot{\mathbf{S}}}{NP - 1} \right) - \dot{m}_{\mathbf{g_{i}}} H_{\mathbf{d}}$$

$$= k_{\mathbf{i-l,i}} \left(\frac{\Delta T}{\Delta X} \right) + \rho_{\mathbf{i+l}} c_{\mathbf{p_{i+l}}} \dot{\mathbf{S}} \left(\frac{NP - \mathbf{i} - \frac{1}{2}}{NP - 1} \right) T_{\mathbf{i+l}}'$$

$$- k_{\mathbf{i,i+l}} \left(\frac{\Delta T}{\Delta X} \right) - \dot{m}_{\mathbf{g_{i}}} c_{\mathbf{p_{i}}} T_{\mathbf{i}}' - \rho_{\mathbf{i}} c_{\mathbf{p_{i}}} \dot{\mathbf{S}} \left(\frac{NP - \mathbf{i} + \frac{1}{2}}{NP - 1} \right) T_{\mathbf{i}}'$$

$$(15)$$

Rearranging:

$$\frac{1}{\frac{\Delta X}{2k_{i-1}} + \frac{\Delta X}{2k_{i}}} P_{i-1}^{'} - \left(\dot{m}_{g_{i}}^{c} c_{p_{i}} + \frac{1}{\frac{\Delta X}{2k_{i-1}} + \frac{\Delta X}{2k_{i}}} + \frac{1}{\frac{\Delta X}{2k_{i}} + \frac{\Delta X}{2k_{i+1}}} \right) + \rho_{i} c_{p_{i}} \frac{\Delta X}{\Delta \theta} - \rho_{i} c_{p_{i}} \left(\frac{\dot{s}}{NP - 1} \right) P_{i}^{'}$$

$$+ \left(\frac{1}{\frac{\Delta X}{2k_{i}} + \frac{\Delta X}{2k_{i+1}}} + \rho_{i+1} c_{p_{i+1}} \dot{s} \left(\frac{NP - i - \frac{1}{2}}{NP - 1} \right) \right) P_{i+1}^{'}$$

$$= -\rho_{i} c_{p_{i}} \frac{\Delta X}{\Delta \theta} P_{i} - \dot{m}_{g_{i}} P_{d}$$
(15a)

The physical model for an interior node in the virgin material is:

The heat balance for this nonablating node is:

$$\frac{\mathrm{d}}{\mathrm{d}\theta} \left(\triangle X \rho_{\mathtt{i}} c_{\mathtt{p_{i}}}^{} T_{\mathtt{i}} \right) \; = \; \triangle X \rho_{\mathtt{i}} c_{\mathtt{p_{i}}}^{} \frac{\mathrm{d}T_{\mathtt{i}}}{\mathrm{d}\theta} \; - \; \rho_{\mathtt{i}} c_{\mathtt{p_{i}}}^{} T_{\mathtt{i}}^{} \left(\frac{\dot{\mathtt{S}}}{\mathtt{NP} \; - \; \mathtt{l}} \right)$$

$$= k_{i-1,i} \left(\frac{\Delta T}{\Delta X} \right) + \rho_{i+1} e_{p_{i+1}} \dot{s} \left(\frac{NP - i - \frac{1}{2}}{NP - 1} \right) T_{i+1} - k_{i,i+1} \left(\frac{\Delta T}{\Delta X} \right)$$

$$- \rho_{i} c_{p_{i}} \dot{S} \left(\frac{NP - i + \frac{1}{2}}{NP - 1} \right) T_{i}'$$
 (16)

Rearranging:

$$\left(\frac{\frac{1}{\Delta X}}{\frac{\Delta X}{2k_{i-1}}} + \frac{\Delta X}{2k_{i}}\right) T_{i-1}' - \left(\frac{1}{\frac{\Delta X}{2k_{i-1}}} + \frac{\Delta X}{2k_{i}} + \frac{1}{\frac{\Delta X}{2k_{i}}} + \frac{\Delta X}{2k_{i+1}}\right) + \rho_{i} c_{p_{i}} \frac{\Delta X}{\Delta \theta} - \rho_{i} c_{p_{i}} \left(\frac{\dot{S}}{NP - 1}\right) T_{i}'$$

$$+ \left(\frac{1}{\frac{\Delta X}{2k_{i}} + \frac{\Delta X}{2k_{i+1}}} + \rho_{i+1} c_{p_{i+1}} \dot{S} \left(\frac{NP - i - \frac{1}{2}}{NP - 1}\right)\right) T_{i+1}' = -\rho_{i} c_{p_{i}} \frac{\Delta X}{\Delta \theta} T_{i}$$

$$+ \left(\frac{1}{\frac{\Delta X}{2k_{i}} + \frac{\Delta X}{2k_{i+1}}} + \rho_{i+1} c_{p_{i+1}} \dot{S} \left(\frac{NP - i - \frac{1}{2}}{NP - 1}\right)\right) T_{i+1}' = -\rho_{i} c_{p_{i}} \frac{\Delta X}{\Delta \theta} T_{i}$$

$$(16a)$$

The physical model for the last node in the ablation material and first node in the backup structure is:

The heat balance equation for this node:

$$\frac{d}{d\theta} \left(\left(\frac{\Delta X_{j}}{2} \rho_{i,j} e_{p_{i,j}} + \frac{\Delta X_{j+1}}{2} e_{p_{i,j+1}} \rho_{i,j+1} \right) T_{i} \right)$$

$$= \left(\frac{\Delta X_{j} \rho_{i,j} e_{p_{i,j}} + \Delta X_{j+1} e_{p_{i,j+1}} \rho_{i,j+1}}{2} \right) \frac{dT}{d\theta} - \frac{1}{2} \left(\frac{\dot{s}}{NP - 1} \right) e_{p_{i,j}} \rho_{i,j} T_{i}$$

$$= k_{i-1,j} \left(\frac{\Delta T}{\Delta X} \right) - e_{p_{i,j}} \rho_{i,j} \dot{s} \left(\frac{\frac{1}{2}}{NP - 1} \right) T_{i} - k_{i,j+1} \left(\frac{\Delta T}{\Delta X} \right)$$

$$= i,j \qquad (17)$$

Rearranging:

Rearranging:
$$\left(\frac{\frac{1}{\Delta X_{j}}}{\frac{\Delta X_{j}}{2k_{i-1},j}} + \frac{\Delta X_{j}}{2k_{i,j}}\right)^{T_{i-1}'} - \left(\frac{\frac{1}{\Delta X_{j}}}{\frac{\Delta X_{j}}{2k_{i-1},j}} + \frac{\Delta X_{j}}{2k_{i,j}} + \frac{1}{\frac{\Delta X_{j+1}}{2k_{i,j+1}}} + \frac{\Delta X_{j+1}}{2k_{i+1},j+1}\right) + \left(\frac{\Delta X_{j}^{\rho_{i,j}^{\rho_{i$$

The backup structure may contain up to a maximum of 12 different materials with or without air gaps between materials. Therefore, conduction or radiation and/or convection between materials is allowed. The heat balance equations for the various modes of heat transfer in the back backup structure are now presented:

a. Interior node material:

$$\frac{\left(\mathbf{T}_{i-1,j}^{'}-\mathbf{T}_{i,j}^{'}\right)}{\frac{\Delta X_{j}}{2k_{i-1,j}}+\frac{\Delta X_{j}}{2k_{i,j}}} - \frac{\left(\mathbf{T}_{i,j}^{'}-\mathbf{T}_{i+1,j}^{'}\right)}{\frac{\Delta X}{2k_{i,j}}+\frac{\Delta X}{2k_{i+1,j}}} = \rho_{i,j}c_{p_{i,j}}\frac{\Delta X_{j}}{\Delta \theta}\left(\mathbf{T}_{i,j}^{'}-\mathbf{T}_{i,j}^{'}\right)$$
(18)

Rearranging:

$$\frac{\frac{1}{\Delta X_{j}} + \frac{\Delta X_{j}}{2k_{i-1,j}} + \frac{\Delta X_{j}}{2k_{i,j}}}{\frac{\Delta X_{j}}{2k_{i-1,j}} + \frac{\Delta X_{j}}{2k_{i,j}} + \frac{\Delta X_{j}}{2k_{i,j}} + \frac{\Delta X_{j}}{2k_{i+1,j}}} + \frac{\rho_{i,j}c_{p_{i,j}}}{\frac{\Delta Q}{\Delta Q}} T_{i,j}^{i} + \left(\frac{\frac{1}{\Delta X_{j}} + \frac{\Delta X_{j}}{2k_{i+1,j}}}{\frac{\Delta X_{j}}{2k_{i+1,j}}} + \frac{\Delta X_{j}}{2k_{i+1,j}} \right)^{T_{i+1,j}}$$

$$= -\rho_{i,j}c_{p_{i,j}} \frac{\Delta X_{j}}{\Delta Q} T_{i,j}$$

$$(18a)$$

b. First node of two interior materials with no gap:

$$\frac{\left(\mathbf{T}_{i-1,j}^{'}-\mathbf{T}_{i,j}^{'}\right)}{\frac{\Delta X_{j}}{2k_{i-1,j}}+\frac{\Delta X_{j}}{2k_{i,j}}}-\frac{\left(\mathbf{T}_{i,j+1}^{'}-\mathbf{T}_{i+1,j+1}^{'}\right)}{\frac{\Delta X_{j+1}}{2k_{i,j+1}}+\frac{\Delta X_{j+1}}{2k_{i+1,j+1}}}$$

$$= \left(\frac{\rho_{i,j}c_{p_{i,j}}^{\Delta X_{j}} + \rho_{i,j+1}c_{p_{i,j+1}}^{\Delta X_{j+1}}}{2}\right) \left(T_{i,j} - T_{i,j}\right)$$
(19)

NOTE: $T'_{i,j} = T'_{i,j+1}$ for this case.

Rearranging:

$$\frac{\frac{1}{\Delta X_{j}}}{\frac{2k_{i-1,j}}{2k_{i,j}}} + \frac{\Delta X_{j}}{2k_{i,j}} - \left(\frac{\frac{1}{\Delta X_{j}}}{\frac{2k_{i-1,j}}{2k_{i,j}}} + \frac{\Delta X_{j}}{2k_{i,j}} + \frac{\frac{1}{\Delta X_{j+1}}}{\frac{2k_{i,j+1}}{2k_{i,j+1}}} + \frac{\Delta X_{j+1}}{2k_{i+1,j+1}} \right) + \left(\frac{\rho_{i,j} c_{p_{i,j}}}{\frac{\Delta X_{j}}{2k_{i,j}}} + \frac{\rho_{i,j+1} c_{p_{i,j+1}}}{\frac{2k_{i,j+1}}{2k_{i+1,j+1}}} \right) T_{i,j}^{i} + \left(\frac{\frac{1}{\Delta X_{j+1}}}{\frac{\Delta X_{j+1}}{2k_{i,j+1}}} + \frac{\frac{\Delta X_{j+1}}{2k_{i+1,j+1}}}{\frac{\Delta X_{j+1}}{2k_{i+1,j+1}}} \right) T_{i,j}^{i} + \left(\frac{\rho_{i,j} c_{p_{i,j}}}{\frac{\Delta X_{j}}{2k_{i,j+1}}} + \frac{\frac{\Delta X_{j+1}}{2k_{i+1,j+1}}}{\frac{\Delta X_{j+1}}{2k_{i+1,j+1}}} \right) T_{i,j}^{i} + \left(\frac{\rho_{i,j} c_{p_{i,j}}}{\frac{\Delta X_{j}}{2k_{i,j}}} + \frac{c_{p_{i,j+1}}}{\frac{\Delta X_{j+1}}{2k_{i+1,j+1}}} \right) T_{i,j}^{i} + \frac{\rho_{i,j} c_{p_{i,j}}}{\frac{\Delta X_{j}}{2k_{i,j}}} + \frac{\rho_{i,j+1} c_{p_{i,j+1}}}{\frac{\Delta X_{j+1}}{2k_{i+1,j+1}}} \right) T_{i,j}^{i} + \frac{\rho_{i,j} c_{p_{i,j}}}{\frac{\Delta X_{j}}{2k_{i,j}}} + \frac{\rho_{i,j+1} c_{p_{i,j}}}{\frac{\Delta X_{j}}{2k_{i,j+1}}} + \frac{\rho_{i,j+1} c_{p_{i,j+1}}}{\frac{\Delta X_{j+1}}{2k_{i+1,j+1}}} \right) T_{i,j}^{i} + \frac{\rho_{i,j} c_{p_{i,j}}}{\frac{\Delta X_{j}}{2k_{i,j}}} + \frac{\rho_{i,j+1} c_{p_{i,j}}}{\frac{\Delta X_{j}}{2k_{i,j}}} + \frac{\rho_{i,j+1} c_{p_{i,j}}}{\frac{\Delta X_{j}}{2k_{i,j}}}$$

c. First node of interior material with an air gap between materials:

$$h_{j}\left(T_{i-1,j}^{'}-T_{i,j+1}^{'}\right)+\left(\frac{\sigma}{\frac{1}{\varepsilon_{j}}+\frac{1}{\varepsilon_{j+1}}-1}\right)\left(T_{i-1,j}^{'}-T_{i,j+1}^{'}\right)$$

$$-\left(\frac{T_{i,j+1}^{'}-T_{i+1,j+1}^{'}}{\frac{\Delta X}{j+1}}+\frac{\Delta X}{2k_{i+1,j+1}}\right)=\frac{\rho_{i,j+1}c_{p_{i,j+1}}^{c}}{2\Delta\theta}\left(T_{i,j+1}^{'}-T_{i,j+1}^{'}-T_{i,j+1}^{'}\right)$$

$$=\frac{\rho_{i,j+1}c_{p_{i,j+1}}^{c}}{2\Delta\theta}$$

$$=\frac{\rho_{i,j+1}c_{p_{i,j+1}}^{c}}{2\Delta\theta}$$

$$=\frac{\Delta X}{2\Delta\theta}$$

$$=\frac{\Delta X}{2\Delta\theta}$$

Equation (20) may be linearized using the approximation

$$T'^{4} \simeq 4T^{3}T' - 3T^{4}$$

as discussed in the Program Description section.

Therefore, rearranging and linearizing, equation (20) becomes:

$$\begin{pmatrix} h_{j} + \left(\frac{\mu_{0}T_{i-1,j}^{3}}{\frac{1}{\epsilon_{j}} + \frac{1}{\epsilon_{j+1}} - 1}\right) T_{i-1,j}^{'} - \left(h_{j} + \left(\frac{\mu_{0}T_{i,j+1}^{3}}{\frac{1}{\epsilon_{j}} + \frac{1}{\epsilon_{j+1}} - 1}\right) + \frac{1}{\frac{\Delta X_{j+1}}{2k_{i,j+1}} + \frac{\Delta X_{j+1}}{2k_{i+1,j+1}}} + \frac{\rho_{i,j+1}^{c} p_{i,j+1}^{c} p_{i,j+1}^{\Delta X_{j+1}}}{2\Delta \theta} T_{i,j+1}^{'} - \left(\frac{\frac{1}{\Delta X_{j+1}} + \frac{\Delta X_{j+1}}{2k_{i,j+1}} + \frac{\Delta X_{j+1}}{2k_{i+1,j+1}}\right) T_{i+1,j+1}^{'}} - \left(\frac{\frac{1}{\Delta X_{j+1}} + \frac{\Delta X_{j+1}}{2k_{i,j+1}} + \frac{\Delta X_{j+1}}{2k_{i+1,j+1}}\right) T_{i+1,j+1}^{'}}{2\Delta \theta} T_{i,j+1}^{'} - \left(\frac{\frac{3\sigma}{\epsilon_{j}} + \frac{1}{\epsilon_{j+1}} - 1}{2\Delta \theta}\right) \left(T_{i,j+1}^{h} - T_{i-1,j}^{h}\right)$$

$$- \left(\frac{3\sigma}{\epsilon_{j}} + \frac{1}{\epsilon_{j+1}} - 1\right) \left(T_{i,j+1}^{h} - T_{i-1,j}^{h}\right)$$

$$(20a)$$

d. Last node of an interior material with an air gap between materials:

$$\frac{\left(\mathbf{T}_{i-1,j}^{'}-\mathbf{T}_{i,j}^{'}\right)}{\frac{\Delta X_{j}}{2k_{i-1,j}}+\frac{\Delta X_{j}}{2k_{i,j}}}-\mathbf{h}_{j}\left(\mathbf{T}_{i,j}^{'}-\mathbf{T}_{i,j+1}^{'}\right)$$

$$-\left(\frac{\sigma}{\left(\frac{1}{\varepsilon_{j}}+\frac{1}{\varepsilon_{j+1}}-1\right)}\right)\left(\mathbf{T}_{i,j}^{',4}-\mathbf{T}_{i,j+1}^{',4}\right)=\frac{\rho_{i,j}\mathbf{c}_{p_{i,j}}^{o}}{2\Delta\theta}\left(\mathbf{T}_{i,j}^{'}-\mathbf{T}_{i,j}^{'}\right)$$
(21)

Rearranging and linearizing:

$$\left(\frac{\frac{1}{\Delta X_{j}}}{\frac{\Delta X_{j}}{2k_{i-1,j}}} + \frac{\Delta X_{j}}{2k_{i,j}}\right)^{T_{i-1,j}} - \left(h_{j} + \frac{1}{\frac{\Delta X_{j}}{2k_{i-1,j}}} + \frac{\Delta X_{j}}{2k_{i,j}} + \left(\frac{\frac{1}{\epsilon_{j}} + \frac{1}{\epsilon_{j+1}} - 1}{\frac{1}{\epsilon_{j}} + \frac{1}{\epsilon_{j+1}} - 1}\right)\right) + \frac{\rho_{i,j}^{c} p_{i,j}^{\Delta X_{j}}}{2\Delta \theta} T_{i,j}^{i} + \left(h_{j} + \left(\frac{\frac{1}{\epsilon_{j}} + \frac{1}{\epsilon_{j+1}} - 1}{\frac{1}{\epsilon_{j+1}} - 1}\right)\right) T_{i,j+1}^{i}$$

$$= -\frac{\rho_{i,j}^{c} p_{i,j}^{\Delta X_{j}}}{2\Delta \theta} T_{i} + \left(\frac{\frac{1}{\epsilon_{j}} + \frac{3\sigma}{\epsilon_{j+1}} - 1}{\frac{1}{\epsilon_{j+1}} - 1}\right) \left(T_{i,j+1}^{h} - T_{i,j}^{h}\right)$$
(21a)

- e. Final node in backup structure:
 - (1) Adiabatic surface

$$\frac{T_{i-1,j}^{'} - T_{i,j}^{'}}{\Delta X_{j}^{}} + \frac{\Delta X_{j}^{}}{2k_{i,j}^{}} = \frac{\rho_{i,j}^{c} p_{i,j}^{} \Delta X_{j}^{}}{2\Delta \theta} \left(T_{i,j}^{'} - T_{i,j}^{}\right) \tag{22}$$

Rearranging:

$$\left(\frac{\frac{1}{\Delta X_{j}}}{2k_{i-1,j}} + \frac{\Delta X_{j}}{2k_{i,j}}\right)^{T_{i-1,j}'} - \left(\frac{\frac{1}{\Delta X_{j}}}{2k_{i-1,j}} + \frac{\Delta X_{j}}{2k_{i,j}}\right) + \frac{\rho_{i,j}^{c} p_{i,j}^{\Delta X_{j}}}{2\Delta \theta} T_{i,j}' = -\frac{\rho_{i,j}^{c} p_{i,j}^{\Delta X_{j}}}{2\Delta \theta} T_{i,j} \qquad (22a)$$

(2) Radiation and/or convection loss to cabin environment

$$\left(\frac{T_{i-1,j}^{'}-T_{i,j}^{'}}{\Delta X_{j}}-\Delta X_{j}^{'}}{2k_{i-1,j}}-T_{env}\right) - h_{env}\left(T_{i,j}^{'}-T_{env}\right)$$

$$- F_{\text{env}} \sigma \left(T_{\mathbf{i}, \mathbf{j}}^{\mathbf{i}} - T_{\text{env}}^{\mathbf{i}_{\mathbf{i}}} \right) = \frac{\rho_{\mathbf{i}, \mathbf{j}} c_{\mathbf{p}_{\mathbf{i}, \mathbf{j}}} \Delta X_{\mathbf{j}}}{2\Delta \theta} \left(T_{\mathbf{i}, \mathbf{j}}^{\mathbf{i}} - T_{\mathbf{i}, \mathbf{j}} \right)$$
(23)

Rearranging:

$$\frac{1}{\frac{\Delta X_{j}}{2k_{i-1,j}} + \frac{\Delta X_{j}}{2k_{i,j}}} T_{i-1,j}^{i} - \left(h_{env} + \frac{1}{\frac{\Delta X_{j}}{2k_{i-1,j}} + \frac{\Delta X_{j}}{2k_{i,j}}} + F_{env}\sigma^{l_{j}}T_{i,j}^{3}\right) + \frac{\rho_{i,j}c_{p_{i,j}}\Delta X_{j}}{2\Delta\theta} T_{i,j}^{i} = -\frac{\rho_{i,j}c_{p_{i,j}}\Delta X_{k}}{2\Delta\theta} T_{i,j}$$

$$- h_{env}T_{env} - F_{env}\sigma \left(3T_{i,j}^{l_{j}} + T_{env}^{l_{j}}\right)$$
(23a)

Discussion of Assumptions

A brief discussion of several assumptions and approximations made in deriving the heat balance equations is now presented.

As shown in the Derivation of Equations section, transient heat conduction, thermal degradation, and the flow of the gaseous products from the reaction zone are the internal thermal transport phenomena of interest. Several methods are available in the treatment of the thermal decomposition process and they differ primarily in whether the chemical decomposition occurs in a single plane at a fixed temperature or a spacially continuous decomposition in depth is assumed. This analysis

assumes that the decomposition from the virgin to the char state occurs in a reaction zone that is defined by known temperature limits. These temperature limits are determined from thermogravimetric (TGA) test data for the particular material being investigated. Figure 3 is a TGA curve for typical charring ablation material. From this curve, the rate of pyrolysis $\begin{pmatrix} \dot{m} \\ g \end{pmatrix}$ is calculated by knowing the temperature change of a particular node with time, that is,

$$\dot{\rho}_{i} = \frac{\rho_{i}' - \rho_{i}}{\Delta \theta} \tag{24}$$

$$\dot{\mathbf{m}}_{\mathbf{g}_{\mathbf{i}}} = \sum_{\mathbf{i}} \dot{\boldsymbol{\rho}}_{\mathbf{i}} \Delta \mathbf{X}_{\mathbf{i}} \tag{25}$$

This method of computing the gas generation rates and local instantaneous density may be subject to error since the TGA curve of a material is influenced by temperature rise rate (DEG/SEC) and the reaction zone may shift up and down the temperature scale. This error can be eliminated by the use of an Arrhenius expression of the form

$$\frac{d\rho}{d\theta} = -A \left(\rho - \rho_c\right)^n \rho^{\frac{E}{RT}}$$
 (26)

The method now being used in STAB II (equation (25)) to calculate the pyrolysis rate is being investigated to determine its validity. The final formulation of the pyrolysis rate law must rest heavily on the experimental rate data for the material under investigation. The use of simple expressions such as equations (24) and (25) may be entirely adequate depending upon activation energy for the decomposition process and order of reaction.

The aerodynamic heating input in the analysis consists of convective and radiative components treated separately. This distinction is necessary since the convective heating can be significantly reduced due to the injection of the ablation gases into the boundary layer with generally no effect on radiant heating. Reduction in the convective heating rate can be approximated by the following expression (ref. 6)

$$\dot{q}_{\text{Block}} = \gamma \dot{m}_{g} \left(H_{T} - H_{w} \right) \tag{27}$$

Therefore,

$$\dot{q}_{\text{Blow}} = \dot{q}_{\text{cw}} \left(\frac{H_{\text{T}} - H_{\text{w}}}{H_{\text{T}} - H_{\text{300}}} \right) - \dot{q}_{\text{Block}}$$
 (28)

However, equation (28) is unsatisfactory for high blowing rates, since \dot{q}_{Block} can become greater than \dot{q}_{cw} . An experimental curve of blocking effectiveness $\psi\left(\frac{\dot{q}}{\dot{q}_{cw}}\right)$ as a function of the mass transfer parameter $\frac{\dot{m}H_T}{\dot{q}_{cw}}$ can be employed to determine the heating reduction at high

blowing rates. Both methods have been employed in the STAB II analysis. Equation (28) is presently in use. However, no satisfactory method for accurately predicting the convective heat blockage has been determined.

Another source of heating is the combustion of the ablation products in the boundary layer. Reference 7 presents an analysis of the oxidation of a carbon surface and the resulting combustive heating. The heating due to combustion as derived in reference 7 is

$$\dot{q}_{comb} = \dot{m}_c \Delta H_c \tag{29}$$

where ΔH is the heat of combustion per unit weight of char.

The thermal properties of the ablation material are both temperature and state dependent (fully or partially charred). Figure 4 is an illustration of the variation of these properties with temperature and state. The thermal properties are assumed to vary as follows:

a. Char zone
$$\left(T_{i} \geq T_{CHAR}\right)$$

$$k_{c} = f \text{ (temp)}$$

$$c_{p} = f \text{ (temp)}$$

$$\rho_{c} = \text{constant}$$

b. Reaction zone
$$\left(T_{ABL} \le T_{i} \le T_{CHAR}\right)$$

$$\rho = f \text{ (temp)} = \rho_{v} + \left(\rho_{v} - \rho_{c}\right) \left(\frac{T_{i} - T_{ABL}}{T_{ABL} - T_{CHAR}}\right)$$

$$k = f(\rho) = k_c + (k_v - k_c) \left(\frac{\rho_i - \rho_c}{\rho_v - \rho_c}\right)$$

$$c_p = f(\rho) = c_{p_c} + (c_{p_v} - c_{p_c}) \left(\frac{\rho_i - \rho_c}{\rho_v - \rho_c}\right)$$

$$c. Virgin zone $\left(T_i < T_{ABL}\right)$

$$\rho_v = constant$$

$$k_v = f (temp)$$

$$c_{p_v} = f (temp)$$$$

The calculation of char removal, due to chemical, thermal, mechanical, or by combination of these mechanisms, has been examined by a multitude of investigators and numerous correlations exist, depending on the specific material involved.

To provide a maximum degree of flexibility for analyzing both ground and flight test data and systhesizing trajectories, the following provisions for char removal (surface movement) are provided:

- a. Removal of char as a function of surface temperature.
- b. Removal of char at a rate which is a function of time.

As the char is removed, the surface moves with respect to a coordinate fixed in the material. The distance between the initial surface location and the char surface is

$$S = \int_0^{\theta} \dot{S} d\theta$$

CUSTOMER UTILIZATION INSTRUCTIONS

Introduction

TBM 7094/40 program FO21, standard ablation program, designated STAB II, is designed to evaluate the transient thermal performance of a charring ablation heat protection system. The program considers 1 ablating material and up to 12 different materials in the supporting

backup structure. A maximum of 50 nodes may be considered in the ablation material and a maximum of 10 nodes per material is allowed for each backup structure material. Air gaps can be considered between successive materials in the backup, thus allowing for both radiative and/or convective heat transfer between materials. The heat loss to the cabin environment from the backup structure can be accomplished by both radiation and/or convection or an adiabatic backface surface may be prescribed.

Unless otherwise specified, the input problem data is in "floating point" form (El2.8 format) and must end in columns 12, 24, 36, 48, 60, and 72. It is suggested that each floating point number have a sign, a two-digit exponent, and a decimal point. For example, the number 145.23 can be written as +1.4523 +02, +145.23 +00, or +14523 +03

Input Nomenclature

The nomenclature used in the problem data input is as follows:

NCASE number of problems to be run successively

HEAD any 72 alphabetical and/or numerical characters

TITLE control card for reading in new input for successive problems

- 1. blank card new data will be read in
- 2. 6 asterisks in columns 1 to 6. Skip to next read statement

TLTM time limit of problem, sec

TINT starting time of problem, sec

NPTT number of points in time-step table (the minimum value of NPTT is 2)

NPLØT output plot control

=l plot routine will be used

=0 plot routine will be ignored

TTABLE time in time-step table, sec

DELITT time step to be used for each calculation - starting at time TTABLE, sec

IPRC variable print frequency in TTABLE table; that is, if

DELTT = 1.0 and IPRC = 10, the output will be printed

at 10-second intervals

FCØNV factor to correct convective heating rate for various body locations

FRAD factor to correct radiative heating for various body locations

TABL temperature at which ablation starts, °R

TCHAR temperature at which ablation stops, °R

TREC surface temperature, (°R) or time (second) at which char removal is to start

RHØV density of virgin ablation material, lb/ft³

RHØC density of mature char material, lb/ft³

FBL ϕ W blowing efficiency of ablation gases in reducing convective heating

EMV emissivity of virgin ablation material

EMC emissivity of charred ablation material

H300 enthalpy of air at 300° K, 129.06 Btu/lb_m

VL initial thickness of virgin ablation material, in.

HV heat of degradation of virgin material, Btu/lbm

VPT test to determine if the reaction zone and char zone thermal properties are irreversible with temperature

=0 properties are irreversible and equal to the value at the maximum individual node temperature (this is the recommended value for VPT)

=1 properties are reversible

FV view factor for external environment

TV sink temperature of external environment, °R CHARK thermal conductivity of material at TCHAR, Btu/hr-ft-°R CHARC specific heat of material at TCHAR, Btu/lb_-°R thermal conductivity of material at TABL, Btu/hr-ft-°R ABLK ABLC specific heat of material at TABL, Btu/lb_-°R number of node points in ablation material NPNKC number of points in char thermal conductivity - temperature table NCPC number of points in char specific heat - temperature table NKV number of points in virgin thermal conductivity temperature table NCPV number of points in virgin specific heat - temperature table NREC number of points in surface recession - temperature or time table TKC temperature values in char thermal conductivity temperature table, °R XKC thermal conductivity values in char thermal conductivity temperature table, Btu/ft-hr-°R TCPC temperature values in char specific heat - temperature table, °R CPC specific heat values in char specific heat - temperature table, Btu/lb_~°R temperature values in virgin thermal conductivity -TKV temperature table, °R thermal conductivity values in virgin thermal conduc-XKV tivity - temperature table, Btu/ft-hr-°R temperature values in virgin specific heat - temperature TCPV table, °R

specific heat values in virgin specific heat temperature CPV table, $Btu/lb_m-{}^{\circ}R$ temperature (°R) or time (sec) values in the surface re-TS cession table surface recession values in the surface recession -SR temperature or time table, in./sec NTRAPT number of time points in the trajectory input table the array of (NTRAPT) trajectory time values, sec TIME the corresponding array of cold wall convective heating QCONrates, Btu/ft²-sec the corresponding array of radiative heating rates, QRAD Btu/ft²-sec the corresponding array of flight velocity, ft/sec VEL number of materials in backup structure **MMB** NPBS total number of node points in backup structure BL total thickness of backup structure, in. XIVPM number of nodes in each individual material in backup structure NKPB number of points in each individual backup structure material thermal conductivity - temperature table NCPB number of points in each individual backup structure material specific heat - temperature table XIDNT any 72 alphanumeric characters used to describe each individual material in the backup structure TXK temperature values in backup material thermal conductivity - temperature tables. °R XK thermal conductivity values in backup material thermal conductivity - temperature tables, Btu/ft-hr-°R

TCP temperature values in backup material specific heat temperature tables, °R CPX specific heat values in backup material specific heat temperature tables, Btu/lb, - °R density of individual materials in backup. lb/ft3 RHØBX XBM thickness of individual materials in backup, in. EMFB emissivity of front surface of each material in backup **EMBB** emissivity of back surface of each material in backup H film coefficient between adjacent materials in backup, Btu/hr-ft²-°R GAPX width of gap between adjacent materials in backup, in. tests to determine the mode of heat transfer between FTEST, BTEST materials for the front and backface of each material respectively =0 conduction only between materials =+1 convective heat transfer only radiation only or radiation and convection heat transfer =-1 TENV temperature of interior cabin environment, °R HENV film coefficient to interior cabin environment, Btu/ft2-hr-°R view factor and emissivity product for radiative heat FENV transfer to cabin interior QLØSS boundary condition between last node of the backup structure and cabin environment

- =0 adiabatic surfaces
- =+1 radiation and/or convective loss

TEST2	determines the proper heat shield initial temperature distribution
:	constant, uniform initial temperature distribution
=	-1 arbitrary initial temperature distribution
=	+1 linear temperature distribution
TEMP:	temperature to be used when constant temperature distribution option is used, °R
TX ∅	initial temperature at front surface of heat shield to be used in computing initial linear temperature gradient, °R
TEMD:	arbitrary temperature distribution values, to be used only if TEST2 is negative. R
NHP	number of points in enthalpy - temperature curve fit
HX	enthalpy values in enthalpy — temperature table, Btu/lb_m
TW	corresponding temperature values in enthalpy - temperature table, °R

NOTE: This table is used for computing the wall enthalpy. An input deck for NHP, HX, and TW has been prepared for air and is available upon request.

Input Data Card Preparation

The input data are given in the following order. Each number below refers to a separate record and must begin on a new data card. The input data has been grouped, where possible, into various sections dealing with a particular part of the input, that is, ablation material properties, trajectory data, backup structure, et cetera. This permits the use of a minimum number of input cards for running successive problems. The title card as described in the input nomenclature controls the input for successive problems.

1. The first data card contains the value of NCASE. NCASE is an integer (15 format) and must end in column 5. This card tells how many problems are to be run and is entered only <u>once</u> at the start of the data deck.

2. Columns 1 through 72 of the second data card contain any title or identification information desired — any alphanumeric character may be used. This card will be printed at the top of the first page of the output. This card <u>must</u> be included in all successive problems to be run.

a. Problem Time Section

- 3. TITLE card if blank, the following 2 cards must be submitted; if 6 asterisks are punched in columns 1 through 6, skip to record number 6.
- 4. This record contains, in the following order: TLIM, TINT, NPTT, NPLØT. TLIM and TINT are entered as floating point numbers and must end in columns 12 and 24. NPTT and NPLØT are integers entered with an 15 format and must end in columns 30 and 35.
- 5. Start entering the values of TTABLE, DELTT, IPRC. TTABLE and DELTT are floating point numbers and must end in columns 12 and 24. IPRC is entered as integer with an I5 format and must end in column 30. Use as many cards as required to enter NPTT values.

b. Heating Rate Factors Section

- 6. TITLE card if blank, the following card must be submitted; if 6 asterisks are punched in columns 1 through 6, skip to record number 8.
- 7. Enter the following: FCØNV, FRAD. These numbers are entered as floating point numbers and must end in columns 12 and 24.

c. Ablation Material Section

- 8. TITLE card if blank, the following cards 9 through 18 must be submitted; if 6 asterisks are punched in columns 1 through 6, skip to record number 19.
- 9. HEADNG card any alphanumeric characters in columns 1 through 72. Records 9 through 18 contain input data for the ablation material.
- 10. Enter the following: TABL, TCHAR, TREC, RHOV, RHOC, FBLOW. These numbers are entered as floating point numbers (6E12.8 format) must end in columns 12, 24, 36, 48, 60 and 72.

- 11. Enter the following: EMV, EMC, H300, VL, HV, VPT. Use same format as card 10.
- 12. Enter the following: FV, TV, CHARK, CHARC, ABLK, ABLC. Use same format as card 10.
- 13. This card contains, in the following order: NP, NKC, NCPC, NKV, NCPV, NREC. These numbers are fixed point integers and must end in columns 5, 10, 15, 20, 25, and 30. An I5 format is used to read in these numbers.
- 14. Start entering the curve of TKC versus XKC, with the values of TKC ending in columns 12, 36, and 60. The corresponding values of XKC must end in columns 24, 48, and 72; for example, three TKC-XKC points are contained on one card. The numbers are entered as floating point numbers. Use as many cards as required to enter NKC points on the curve.
- 15. Start entering the curve of TCPC versus CPC with the values of TCPC, ending in columns 12, 36, and 60. The corresponding values of CPC must end in columns 24, 48, and 72; for example, three TCPC-CPC points are contained on one card. The numbers are entered as floating point numbers. Use as many cards as required to enter NCPC points on the curve.
- 16. Start entering the curve of TKV versus XKV with the values of TKV ending in columns 12, 36, and 60. The corresponding values of XKV must end in columns 24, 48, and 72; for example, three TKV-XKV points are contained on one card. The numbers are entered as floating point. Use as many cards as required to enter the NKV points on the curve.
- 17. Start entering the curve of TCPV versus CPV with the values of TCPV, ending in columns 12, 36, and 60. The corresponding values of CPV must end in columns 24, 48, and 72; for example, three TCPV-CPV points are contained on one card. The numbers are entered as floating point. Use as many cards as required to enter NCPV points on the curve.
- 18. Start entering the curve of TS versus SR with the values of TS, ending in columns 12, 36, and 60. The corresponding values of SR must end in columns 24, 48, and 72; for example, three TS-SR points are contained on one card. The numbers are entered as floating point. Use as many cards as required to enter NREC points on the curve.

d. Trajectory Data Section

19. TITLE card - if blank, the following cards 20 through 22 must be submitted; if 6 asterisks are punched in columns 1 through 6, skip to record number 23.

- 20. HEADNG card any alphanumeric characters in columns 1 through 72. Records 21 through 22 contain trajectory input data.
- 21. Enter the following: NTRAPT. This number is an integer and must end in column 5. An I5 format is used to read in this number.
- 22. Start entering the trajectory data in the following order: TIME, QCØN, QRAD, VEL. These values are entered as floating point numbers and must end in columns 12, 24, 36, and 48. There are four trajectory data points on one card. Use as many cards as required to enter NTRAPT points in the trajectory.

e. Backup Structure Section

- 23. TITLE card if blank, the following cards 24 through 32 must be submitted; if 6 asterisks are punched in columns 1 through 6, skip to record number 33.
- 24. HEADNG card any alphanumeric characters in columns 1 through 72. Records 25 through 32 contain properties of backup structure.
- 25. Enter the following: NMB, NPBS, BL. These three values must end in columns 5, 10 and 24. NMB and NPBS are integers and are read in under an I5 format. BL is a floating point number.
- 26. Enter the values of XNPM. XNPM is in floating point form and must end in columns 12, 24, 36, 48, 60 and 72. Use as many cards as required to enter NMB points.
- 27. Enter the values of NKPB and NCPB. These numbers are integers and NKPB must end in columns 5, 15, 25, 35, and 45; and the corresponding values of NCPB must end in columns 10, 20, 30, 40, and 50. An I5 format is used to read these values. Five NKPB-NCPB values are contained on one card. Use as many cards as are required to enter NMB points.
- 28. XIDNT card any alphanumeric characters in columns 1 through 72. This card contains a description of each backup material.
- 29. Start entering the curve of TXK versus XK with the values of TXK, ending in columns 12, 36, and 60. The corresponding values of XK must end in columns 24, 48, and 72; for example, three TXK-XK points are contained on one card. The numbers are entered as floating point. Use as many cards as required to enter NKPB points on the curve.

30. Start entering the curve of TCP versus CPX with the values of TCP, ending in columns 12, 36, and 60. The corresponding values of CPX must end in columns 24, 48, and 72; for example, three TCP-CPX points are contained on one card. The numbers are entered as floating point. Use as many cards as required to enter NCPB points on the curve.

NOTE: Repeat records 28, 29, and 30 until the properties for NMB materials have been entered. The maximum number for NMB is 12.

- 31. Start entering the following values in order: RHØBX, XBM, EMFB, EMBB. These values are entered as floating point numbers (6E12.8 format) and must end in columns 12, 24, 36, 48, 60, and 72. Use as many cards as required to enter NMB points.
- 32. Start entering the following values in order: H, GAPX, FTEST, BTEST. These values are entered as floating point numbers (6E12.8 format) and must end in columns 12, 24, 36, 48, 60, and 72. Use as many cards as required to enter NMB points.

f. Interior Environment Section

- 33. TITLE card if blank, the following cards 34 through 35 must be submitted; if 6 asterisks are punched in columns 1 through 6, skip to record number 36.
- 34. HEADNG card any alphanumeric characters in columns 1 through 72. Record 35 contains properties of environment.
- 35. Enter the following: TENV, HENV, FENV, QLØSS. The values are entered as floating point numbers and must end in columns 12, 24, 36, and 48.

g. Initial Temperature Section

- 36. TITLE card if blank, the following records 37 through 38 must be submitted; if 6 asterisks are punched in columns 1 through 6, skip to record 40.
- 37. HEADNG card any alphanumeric characters in columns 1 through 72. Records 38 through 39 contain initial temperature distribution input.
- 38. Enter the following: TEST2, TEMPI, TXO. These values are entered as floating point numbers and must end in columns 12, 24, and 36.

NOTE: If TEST2 is a negative number, record 39 must be submitted; otherwise, skip to record 40.

39. Enter the arbitrary temperature distribution values, TEMDI. These values are entered as floating points with a 6E12.8 format. Use as many cards as required to enter NP plus NPBS node points.

h. Enthalpy - Temperature Section

- 40. TITLE card if blank, the following records 41 and 42 must be submitted; if 6 asterisks are punched in columns 1 through 6, this is the last data card in the problem input.
- 41. Enter the following: NHP. This value is an integer and must end in column 5. An I5 format is used to read in this number.
- 42. Start entering the curve of HX versus TW with the value of HX ending in columns 12, 36, and 60. The corresponding values of TW must end in columns 24, 48, and 72; for example, three HX-TW points are contained on one card. The numbers are entered as floating point. Use as many cards as required to enter NHP points on the curve. Record 42 consists of the last data cards required as input for a problem.

As many successive problems as you wish may be run at one time by proper input preparation. STAB II has been designed to save all input information until changed by new input data. Therefore, the use of the TITLE control card is very important when running more than one problem and using the input data of the previous problem(s). As shown, each input section starts with a TITLE control card for determining whether new input data is to be used. If any data is changed within a section, then all data cards required for that section must be submitted.

STAB II can also be used for solving one dimensional transient heat conduction problems of nonablating materials. The following input parameters must be adhered to:

- a. TABL must be greater than the maximum temperature expected during the calculation. Also, TABL > TCHAR > TREC.
- b. The ablation material must be considered to be the first material in the structure for calculational purposes.
- c. The virgin and char properties must be inputed as described above but can have the same values; that is, XKV = XKC, CPC = CPV, $RH \not OV = RH \not OC$, et cetera.

The following dimensions statements and program limitations should not be violated when preparing the input described above for ablating and nonablating structure:

- a. All property tables can have a maximum of 20 points (i.e., a temperature and specific heat value constitute one point).
- b. The surface recession table can have a maximum of 50 points (TS and SR constitute one point).
- c. The trajectory table can have a maximum of 300 points (TIME, QC \emptyset N, QRAD, VEL constitute one point).
- d The ablation material can be broken into a maximum of 50 nodes. The backup structure can consist of up to 12 different materials with a maximum of 10 nodes per material.
- e. A minimum of 3 nodes per material (ablation or backup) must be specified.
- f. A minimum of two materials must be specified (ablation material and one backup structure material).
- g. Pure conduction only is allowed between the ablation material and the first material in the backup.
- h. If any data input is changed in the Ablation Material Section on successive problems, the Ablation Material Section data cards plus the Initial Temperature Section data cards must be submitted.

Program Output Information

The computed results are available in two forms of output; tabular and plot outputs. The tabular output presents the computed results in block type form for each computation step as controlled by the print count control number. As discussed in the preparation of input data, both the computational time step and print control can be varied throughout the running of a problem. Therefore, excessive printed output is avoided, as well as a considerable savings in actual machine computation time. The plot outputs are printed and plotted only when the entire set of problems to be run are completed.

Tabular output. - The program prints a listing of the data input parameters for identification of the problem and ease in determining if there are any input mistakes. For stacked problems, the program prints only that input information that is changed from the previous problem. The following calculated problem output is printed:

- a. Time, sec
- b. Cold wall convective heating rate without blowing, Btu/ft2-sec
- c. Radiative heating rate, Btu/ft2-sec
- d. Velocity, ft/sec
- e. Gas ablation rate, lb_m/ft^2 -hr
- f. Char ablation rate, lb_m/ft^2 -hr
- g. Total ablation rate, lb_{m}^{2}/ft^{2} -hr
- h. Surface recession depth from original surface, in.
- i. Hot wall convective heating rate without blowing, Btu/ft2-sec
- j. Temperature distribution in ablation material, °R
- k. Temperature distribution in backup structure, °R

The temperatures printed for the ablation material are for fixed distances from the original surface. These distances are calculated from the initial ablation material thickness and number of nodes in ablation material. For example:

let

$$VL = 1.0 in.$$

$$NP = 11$$

then

$$\Delta X = \frac{VL}{NP - 1} = 0.1$$

The temperatures will be printed for X distances of 0, 0.1, 0.2, 0.3, et cetera, from the original surface until the surface has receded

beyond these fixed distances at which time the node no longer exists and is dropped from the printout. This is illustrated in the following way using the above example; let surface recession = 0.26 in., then the first temperature printed is the surface temperature of the material, located 0.26 in. from the original material surface. The following printed ablation material temperatures are for X distances of 0.3, 0.4, 0.5, 1.0 in.

The format for the temperature distribution printout is El6.5 with six temperatures printed per line.

<u>Plot output</u>. - The plot output gives the following ablative material performance parameters as a function of time:

- a. Surface depth, in.
- b. Bondline temperature between ablator and backup structure. °R
- c. Two selected isotherm depths

These values are also printed in tabular form for ease in checking and replotting of the results. The plotted curves contain all maximum and minimum values of the parameters.

PROGRAM VERIFICATION

As discussed in the previous sections, approximations and assumptions were made in the analytical model to afford both a quick and accurate solution in predicting the thermal response of a charring heat shield. These simplifying assumptions and approximations are expected to introduce only minor errors; however, the validity of the analyses and resultant accuracy can be judged only by a comparison with exact theoretical solutions and experimental data. Three examples have been selected and a comparison of the STAB II results with the theoretical and test data is discussed in the following paragraphs.

An elementary transient heating example was chosen to demonstrate the accuracy and numerical stability of the STAB II program. A steel slab 6 inches thick was selected and assumed to be at uniform initial temperature of 460° R (0° F). The thermal properties were considered constant. The front surface was subjected to a heating rate of 72 Btu/sec-ft² and an adiabatic back surface was assumed. Figure 5 shows a comparison of the STAB II calculated in depth temperatures as a function of time with the exact solution taken from reference 8.

To demonstrate the STAB II solution with a moving boundary, a slab with constant properties, uniform initial temperature, front surface moving with a constant velocity, and constant surface temperature was chosen. The exact solution for semi-infinite slab with these boundary and initial conditions is presented in reference 9. Figure 6 presents a comparison of the STAB II temperature response with the exact solutions. As can be seen from this figure, the two solutions are not in agreement for approximately the first 50 to 60 seconds of the transient. This disagreement is the result of the quasi-steady state

$$\left(\left(\frac{\partial \mathbf{T}}{\partial \theta} \right)_{\xi=0} = 0; \ \mathbf{k} \left(\frac{\partial \mathbf{T}}{\partial \mathbf{X}} \right)_{\mathbf{X}=0} = \dot{\mathbf{S}} \rho \mathbf{c}_{\mathbf{p}} \ \Delta \mathbf{T} \right)$$

assumption made in the exact solution analysis. A calculation was made to estimate the induction time (time at which $\frac{\partial \Gamma}{\partial \theta} = 0$ is a good assumption) and found to be approximately 60 seconds, which is in agreement with the STAB II results.

Finally, to verify the fully charring ablation model, an example of a typical charring material was chosen. The charring ablation material is initially 1.6 inches thick with an adiabatic back surface and a constant heat flux of 95 Btu/sec-ft² applied to the front surface. The surface is assumed to recede at a constant velocity of 3.05 (10⁻³) in./sec. Figure 7 presents a comparison of the in-depth temperatures with actual test results obtained in an arc tunnel. The results are in good agreement, with the largest deviations between calculated and measured values occurring for the thermocouple located 1.0 inches in depth. The disagreement could be attributed to several possible errors; thermal property values, incorrect location of thermocouples, et cetera. The effect of varying the thermal properties (thermal conductivity, specific heat, etc.) is presently being investigated and will be reported in a future report.

Tables I and II present the input and output data used for this example. Figures 8, 9, and 10 are the resulting plot routine output.

The camparisons presented above between the computer results and the exact solutions and test results are considered satisfactory. As discussed previously, the assumptions used in the analytical model will be examined more critically as additional test data and analyses become available. The program will be revised and updated as required to reflect these additional studies.

CONCLUDING REMARKS

An analyses and computer program for predicting the transient thermal response of a charring ablation thermal protection system has been described. The numerical formulation of the equations is such that an implicit solution is obtained. This method of solution affords both a rapid and accurate solution for both ablating and nonablating type problems.

Provision is made in the program for a number of surface boundary conditions. These provisions allow efficient use of the program for analyzing both ground and flight test data and trajectory synthesis.

The computer program has been checked out with both exact solutions and actual ablation test data. The numerical results are in good agreement with the exact solutions and test data. However, the analysis depends upon using good property values and some effort must be expended in obtaining the best possible thermal properties. The analysis and program will continue to be checked as additional flight and ground test data becomes available, to both update the thermal property values and eliminate the individual approximations and assumptions used in the analysis when possible.

REFERENCES

- Israel, M. H.; and Nardo, S. V.: An Annotated Bibliography on Ablation and Related Topics. Pibal Report No. 686, May 1964.
- 2. Hurwicz, H.: Aerothermo Chemistry Studies in Ablation. Combustion and Propulsion. 5th Agardograph Colloquium, Pergamon, New York (1963)
- 3. Liebmann, G.: A New Electrical Analogue Method for the Solution of Transient Heat Conduction Problems. Transactions of the ASME, vol. 78, p 655, 1956.
- 4. Forsythe, G. E.; and Wasow, W. R.: Finite-Difference Methods for Partial Differential Equations. John Wiley and Sons, Inc., New York, 1960.
- 5. Angelone, J.; et al: Development of a Reinforced Carbonaceous and Ablative Composite for Entry Heat Protection of Manned Spacecraft. TR 330.17, produced under NASA Contract NAS 9-576, Astronautics Div., Chance Vought Corp., July 1963.
- 6. Roberts, Leonard: Mass Transfer Cooling Near the Stagnation Point.
 NASA TR R-8, 1959
- 7. Swann, R. T.; and Dow, M. B.: Determination of Effects of Oxidation on Performance of Charring Ablators. NASA TR R-196, June 1964.
- 8. Carslaw, H. S.; and Jaeger, J. C.: Conduction of Heat in Solids. Oxford Press, 1959.
- 9. Schneider, P. J: Conduction Heat Transfer. Addison-Wesley Publishing Co., Inc., 1957.

APPENDIX A

SAMPLE PROBLEM

The following sample problem is shown to indicate the form of the data input and the program output. A typical charring material subjected to a constant heating experienced in arc tunnel is presented. A sketch of the model is given below:

The various material properties and dimensions are shown in table II, program output. The insulation is assumed to be ablation material for this problem. The problem coding sheet and subsequent data card listing are shown in table I. The initial temperature of the structure was assumed uniform and equal to 530° R (70° F). Figures 8, 9, and 10 are the output data obtained from the plot routines.

		•	
			*

APPENDIX B

PROGRAM IN FORTRAN STATEMENTS

	~	

```
SIBFTC MAIN
                                                                                 A0000
                                                                                 ADD10
      STRUCTURES AND MECHANICS DIVISION
C
                                                                                A0020
C
      THERMO-STRUCTURES BRANCH
                                                                                A0030
C
      THERMAL PROTECTION SYSTEMS SECTION
                                                                                40040
C
                                                                                 A0050
C
      THIS PROGRAM DETERMINES THE PERFORMANCE OF A CHARRING ABLATOR
                                                                                 A0060
C
                                                                                 A0070
C
      ANALYSIS AND PROGRAM DEVELOPED BY DONALD M. CURRY * E532
                                                                                 08004
C
                                                                                Annan
      DIMENSION ESAVE1(3) FSAVF2(3) ESAVE3(3)
                                                                                ANTON
      DIMENSION TITLE(12), HEADING(12), XIDNT(12, 12), TKC(20), XKC(20),
                                                                                A0110
     1CPC(2n),TKV(2n),XKV(2n),TCPV(20),CPV(20),TIME(30n),QCON(300),
                                                                                A0120
     20RAD(300).VEL(300).XNPM(12).NKPB(12).NCPB(12).TXK(20.12).XK(20.12)
                                                                                A0130
     3,TCP(20,12),CPX(20,12),RHOBX(12),XBM(12),FMFB(12),EMBR(12),HXX(12)
                                                                                A0140
     4,GAPX(12),FTEST(12),BTEST(12),TEMDI(200),TX1(200),TX2(200),
                                                                                A0150
     5TX2T(10,12),TUL1(200),TUL2(200),HX(50),TW(50),IR(50),IR1(50),
                                                                                A0160
     61R2(50),TUL(50),1FM(50),TY(200),A(200),B(200),C(200),D(200),
                                                                                A0170
     7R(50),RH0(50),CP(50),DXR(12),XKR(10,12),CPB(10,12),XMDG(50),
                                                                                A0180
     8YK(50), AB(10,12), BB(10,12), CB(10,12), DB(10,12), SB(10,12),
                                                                                A0190
     9RP1(10,12), RB2(10,12), H(12), S(50), NPM(12)
                                                                                0020A
      DIMENSION TTUL(50) + RHOY1 (50) + RHOY2 (50) + DRHO (50) + TCPC (20)
                                                                                A0210
      DIMENSION TIMEP(300), PRES(300), XC(50), TX2C(50), XV(50), XDV(50)
                                                                                A0220
      DIMENSION TS(50), SR(50)
                                                                                A0230
      DIMENSION TTARLE (20) . DELTT (20) . IPPC (20)
                                                                                ANDUN
      DIMENSION ASAVE1(3), ASAVE2(3), ASAVE3(3), BSAVE1(3), BSAVE2(3),
                                                                                A0250
     1BSAVE3(3), CSAVE1(3), CSAVE2(3), CSAVE3(3), HEAD(12),
                                                                                A0260
     1DSAVE1(3), DSAVE2(3), DSAVE3(3)
                                                                                A0270
      DIMENSION XRA(30), YA(30)
                                                                                A0280
C
                                                                                A0290
      COMMON TKC,XKC,TCPC,CPC,TKV,XKV,TCPV,CPV,XNPM,RHOBX,XRM,FMBB,
                                                                                40300
     1FMFB,NKPB,NCPP,TXK,XK,TCP,CPX,NPM,GAPX,FTEST,RTEST,TEMDI,TX1,
                                                                                A0310
     2TX2, TX2T, TUL, TUL, TUL, TUL, P, TR, IR1, IR2, A, B, C, D, S, R, AB, BB, CR, DB, SB,
                                                                                A0320
     3RP1,RB2,TY,RHOY1,RHOY2,XMDG,RHO,CP,YK,XKB,CPB,DXB,DT,XLOST,
                                                                                A0330
     4TABL,TCHAR,TRFC,RHOV,RHOC,FBLOW,FMV,EMC,H30Q,NKC,NCPC,NKV,NCPV,
                                                                                A0340
     5NP,NMR,NPBS,NPF,TEST2,TEMPI,TX0,TENV,HENV,FENV,QLOSS,TLIM,TINT
                                                                                A0350
      COMMON I1, I2, I3, I4, I5, I6, QIN, INT, DX, XMT, TL, VL, BL, DMP, FRR1, ERR2,
                                                                                A0360
     1FRR3, ERR4, HV, VPT, CHARK, CHARC, ABLK, ABLC, XMDC, H
                                                                                A0370
                                                                                A0380
 3000 FORMAT(12A6)
                                                                                A0390
 3001 FORMAT(1X,12A6)
                                                                                A0400
 3002 FORMAT(6E12.8)
                                                                                A0410
 3003 FORMAT(615)
                                                                                A0420
 3004 FORMAT(115)
                                                                                A0430
 3005 FORMAT(215)
                                                                                A0440
 3007 FORMAT(215,1E14.8)
                                                                                A0450
 3008 FORMAT(///1X,12A6)
                                                                                A0460
 3009 FORMAT(1H1,1x,12A6)
                                                                                A0470
 3010 FORMAT(4E12.8)
                                                                                A0480
 3011 FORMAT(2E12.8, I6, I5, F13.8, E12.8)
                                                                                A0490
 3012 FORMAT(2E12.8.16)
                                                                                A0500
                                                                                A0510
      DATA PRVOUS/0545454545454/
                                                                                A0520
      REWIND 11
      STOP=9999.
                                                                                A0530
      READ(5,3003)NCASE
                                                                                A0540
      LPLOT=0
                                                                                A0550
                                                                                A0560-
      JCNT=0
```

C

C

```
A0570
50 NK=1
                                                                              A0580
    11=2
                                                                              A0590
    12=2
                                                                              A0600
    13=2
                                                                              A0610
    14=2
    15=2
                                                                              A0620
                                                                              A0630
    16=2
                                                                              A0640
    117=2
    JNT=1
                                                                              A0650
    xt 05T=0.0
                                                                              A0660
                                                                              40670
    VMT=0.0
                                                                              40680
    XMDT=0.0
                                                                              A0690
    FRR1=0.0
                                                                              A0700
    FPR2=0.0
                                                                              A0710
    FRR3=0.0
                                                                              A0720
    FRR4=0.0
    TCT=0
                                                                              A0730
    TCONT=0
                                                                              A0740
                                                                              A0750
    xMDC=n.0
                                                                              A0760
    NKP=1
                                                                              A0770
    XLSTV=0.0
                                                                              A0780
    NPS=2
                                                                              A0790
    FPR5=0.0
    TPCT=0
                                                                              0080A
                                                                              ABR10
    TCTP=0
                                                                              A0820
    TPLOT=1
                                                                              A0830
    NXA=1
                                                                              A0840
    NYB=1
    NXC=1
                                                                              A0850
    NYD=1
                                                                              A0860
                                                                              A0870
    SAVY3=-100.
                                                                              A0880
    SAVY4X=-100.
                                                                              40890
    SX0=0.0
                                                                              A0900
    SDOT=0.0
                                                                              A0910
    GENERAL TITLE OF PROBLEM
                                                                              A0920
                                                                              A0930
100 READ(5,3000) (HEAD(K),K=1,12)
                                                                              A0940
    WRITE(6,3009) (HEAD(K),K=1,12)
                                                                              A0950
    LPLOT=LPLOT+1
                                                                              A0960
   .WRITE (11)(HEAD(I).I=1.12)
                                                                              A0970
    WRITE (6,110)
                                                                              A0980
110 FORMAT(//1X,11HINPUT DATA.//)
                                                                              A0990
    READ(5,3000) (TITLE(L),L=1,12)
                                                                              A1000
    TF(TITLE(1).FR.PRVOUS) GO TO 150
    READ(5,3011)TLIM,TINT,NPTT,NPLOT,DMP,TDMP
                                                                              A1010
                                                                              A1020
    RFAD(5,3012) (TTABLE(1),DELTT(1),IPRC(1),J=1,NPTT)
                                                                              A1030
    T=TINT
                                                                              A1040
    DTS=DFLTT(1)
                                                                              A1050
    DT=DELTT(1)/3600.0
    WRITE(6,120) TLIM, TINT, MPTT
                                                                              A1060
                                                                              A1070
120 FORMAT(1H0,11HTIME LIMIT=,1PF10.4,4X,13HTNITIAL TIME=,1PE10.4,4X,5
   1HMPTT=, 14)
                                                                              A1080
                                                                              A1090
    wRITE(6,122)
122 FORMAT(//8X,4HTIME,10X,9HTIME STFP,6X,13HPRINT CONTROL)
                                                                              A1100
    WRITE(6,124) (TTARLE(1), DFLTT(1), IPRC(1), I=1, NPTT)
                                                                              A1110
                                                                              A1120
124 FORMAT(5x,1PE10.4,6X,1PE10.4,9X,14)
                                                                              A1130
```

```
LOCATION FACTORS FOR CONVECTIVE AND RADIATIVE HEATING 150 READ(5.3000) (TITLE(\lfloor),L=1.12)
                                                                              A1140
A1150
    IF(TITLE(1).EQ.PRVOUS) GO TO 200
                                                                              A1160
    READ(5,3002) FCONV, FRAD
                                                                              A1170
                                                                              A1180
    WRITE(6,155) FCONV, FRAD
155 FORMAT(1H0,6HFCONV=,1PE12.5,4X5HFRAD=,1PF12.5/)
                                                                              A1190
                                                                              A1200
    PROPERTIES OF ABLATION MATERIAL
                                                                              A1210
                                                                              A1220
200 RFAD(5,3000) (TITLE(L),L=1,12)
                                                                              A1230
    IF(TITLE(1).En.PRVOUS) Gn TO 300
                                                                              A1240
    RFAD(5,3000) (HEADNG(K),K=1,12)
    RFAD(5,3002) TABL, TCHAR, TREC, PHOV, RHOC, FRLOW, FMV, FMC, H300, VL, HV,
                                                                              A1250
   1VPT, FV, TV, CHARK, CHARC, ABLK, ABLC
                                                                              41260
    REA (5,3003) NP,NKC,NCPC,NKV,NCPV,NREC
                                                                              A1270
    READ(5,3002) (TKC(K),XKC(K),K=1,NKC)
                                                                              A1280
                                                                              A1290
    RFAD(5,3002) (TCPC(M),CPC(M),M=1,NCPC)
                                                                              A1300
    RFAD(5,3002) (TKV(L), XKV(L), L=1, NKV)
    RFAD(5,3002) (TCPV(N),CPV(N),N=1,NCPV)
                                                                              A1310
    READ(5,3002) (TS(I),SR(I),I=1,NRFC)
                                                                              A1320
    WRITE(6,3008) (HEADNG(K),K=1,12)
                                                                              A1330
    WRITE(6,210) TABL, TCHAR, TREC, RHOV, RHOC, FBLOW, FMV, EMC, H300, VL, HV,
                                                                              A1340
   1VPT, FV, TV, CHARK, CHARC, ARLK, ABLC
                                                                              A1350
210 FORMAT(1H0,5HTABL=,1PF12,5,3X,6HTCHAR=,1PF12,5,3X,5HTREC=,1PE12,5,
                                                                              A1360
  -13X,5HRHOV=,1PF12.5,3X,5HRHOC=,1PF12.5,21X/1X,6HFBLOW=,1PF12.5,4X.4
                                                                              A1370
   2HEMV=,1PE12.5,4X,4HEMC=,1PE12.5,3X,5HH300=,1PF12.5,5X,3HVL=,1PE12.
                                                                              A1380
   35/4X,3HHV=,1PF12.5,4X,4HVPT=,1PF12.5,5X,3HFV=,1PF12.5,5X,3HTV=,1PE
                                                                              A1390
                                                                              A1400
   112.5,2X,6HCHARK=,1PE12.5/1X,6HCHARC=,1PE12.5,3X,5HABLK=,1PE12.5,3X
                                                                              A1410
   2.5HABLC=,1PE12.5/)
                                                                              A1420
    VLI=VL
                                                                              A1430
    VL=VL/12.0
                                                                              A1440
    VL.V=VL
    WRITE(6,220) NP, NKC, NCPC, NKV, NCPV, NREC
                                                                              A1450
220 FORMAT(2X,3HNP=,114,4X,4HNKC=,114,4X,5HNCPC=,114,4X,4HNKV=,114,4X,
                                                                              41460
                                                                              A1470
   15HNCPV=,114,4X,5HNREC=,114)
                                                                              A1480
    WRITE(6,221)
221 FORMAT(/32X,15HVIRGIN MATFRIAL/20X,7HTHERMAL,38X,8HSPFCIFIC/3X,11H
                                                                              A1490
   1TFMPERATURE, 4X, 12HCONDUCTIVITY, 19X, 11HTEMPERATURF, 7X, 4HHFAT)
                                                                              A1500
    KLLL=MINU(NKV,NCPV)
                                                                              A1510
    WRITE(6.222) (TKV(L),XKV(L),TCPV(L),CPV(L),L=1,KLLL)
                                                                              A1520
222 FORMAT(2X,1PE12.5,4X,1PE12.5,18X,1PE12.5 ,3X,1PE12.5)
                                                                              A1530
                                                                              A1540
    TF(NKV-NCPV) 223,227,225
                                                                              A1550
223 KLLLL=KLLL+1
                                                                              A1560
    WRITE(6,224) (TCPV(L),CPV(L),L=KLLLL,NCPV)
                                                                              A1570
224 FORMAT (48X, 1PF12.5, 3x, 1PF12.5)
                                                                              A1580
    60 TO 227
225 KLLLL=KLLL+1
                                                                              A1590
    WRITE(6,226) (TKV(L),XKV(L),L=KLLLL,NKV)
                                                                              A1600
226 FORMAT(2X,1PE12.5,4X,1PE12.5)
                                                                              A1610
227 WRITE(6,228)
                                                                              A1620
228 FORMAT(//33X,14HCHAR MATFRIAL/20X,7HTHERMAL,38X,8HSPECIFIC/3X,11H
                                                                              A1630
   1TEMPERATURE,4X,12HCONDUCTIVITY,19X,11HTEMPERATURE,7X,4HHEAT)
                                                                              A1640
    KLLL=MINO(NKC, NCPC)
                                                                              A1650
    WRITE(6,222) (TKC(L), XKC(L), TCPC(L), CPC(L), L=1, KLLL)
                                                                              A1660
    IF(NKC-NCPC) 230,235,232
                                                                              A1670
                                                                              A1680
230 KLLLL=KLLL+1
                                                                              A1690
    WRITE(6,224) (TCPC(L),CPC(L),L=KLLLL,NCPC)
                                                                              A1700
    GO TO 235
```

```
232 KLLLL=KLLL+1
                                                                              A1710
      WRITE(6,226) (TKC(L), XKC(L), LEKLLLL, NKC)
                                                                               A1720
  235 WRITE(6,240)
                                                                              A1730
  240 FORMAT(//28X,23HSURFACE RFCESSION TABLE//25X,11HTEMPERATURE,8X,11H
                                                                               A1740
     1SR - IN/SEC)
                                                                               A1750
      WRITE(6,245) (TS(I), SR(I), I=1, NRFC)
                                                                               A1760
  245 FORMAT (24X, 1PF12.5, 7x, 1PF12.5)
                                                                               A1770
C
                                                                               A1780
      PROPERTIES OF TRAJECTORY
                                                                               A1790
  300 RFAD(5,3000) (TITLE(L),L=1,12)
                                                                               A1800
      TF(TITLE(1).FR.PRVOUS) GO TO 400
                                                                               A1810
      RFAD(5,3000) (HEADNG(L),L=1,12)
                                                                               A1820
      READ(5.3004) NTRAPT
                                                                               A1830
      READ(5,3010) (TIME(K),QCON(K),QRAD(K),VEL(K),K=1,NTRAPT)
                                                                               A1840 .
      wRITE(6,3008) (HEADNG(L),L=1,12)
                                                                               A1850
      WRITE(6.310) NTRAPT
                                                                               A1860
  310 FORMAT(1H0:27H NO. OF TRAJECTORY POINTS =:114)
                                                                               41870
      WRITE(6,320)
                                                                               41880
  320 FORMAT(//RX,4HTIME,8x,12HQ CONVECTIVE,4X,11HQ RADIATIVE,7X,8HVELOC
                                                                               A1890
                                                                               A1900
     1ITY)
      WRITE(6,330) (TIME(K),QCON(K),QRAD(K),VEL(K),K=1,NTRAPT)
                                                                               41910
  330 FORMAT(124E16.5)
                                                                              11920
С
                                                                               A1930
      PROPERTIES OF BACK-UP STRUCTUPE
                                                                               A1940
  400 RFAD(5,3000) (TITLE(L),L=1,12)
                                                                               A1950
      IF(TITLE(1).EQ.PRVOUS) GO TO 500
                                                                               A1960
      WRITE(6,410)
                                                                              41970
  410 FORMAT(//10X,31H PROPERTIES OF BACKUP STRUCTURE/)
                                                                               4198n
      READ(5,3007) NMB, NPBS, BL
                                                                               A1990
      READ(5,3002) (XNPM(K),K=1,NMB)
                                                                               A2000
      READ(5,415) (NKPB(I),NCPB(I),I=1,NMB)
                                                                               A2010
  415 FORMAT(1015)
                                                                               A2020
      DO 420 K=1.NMP
                                                                               A2030
      NPM(K)=XNPM(K)+0.00000002
                                                                               A2040
  420 CONTINUE
                                                                               A2050
      WRITE(6,425) NMB, NPBS, BL
                                                                              42060
  425 FORMAT(/4X:35HNO. OF MATERIALS IN BACK-UP SHIELD=:114/4X:40HTOTAL
                                                                              A2070
     INUMBER OF NODES IN BACK-UP SHIELD=,114/4x,28HTHICKNESS OF BACK-UP
                                                                               APRA
     25HIELD=,1PE12.5//)
                                                                               A2090
      BL=BL/12.0
                                                                               A2100
      DO 440 I=1,NMR
                                                                               A2110
      LK=NKPB(I)
                                                                               A2120
                                                                               A2130
      LCP=NCPB(I)
      RFAD(5,3000) ((XIDNT(K,I)),K=1,12)
                                                                               A2140
      RFAD(5,3002) ((TXK(J.T),XK(J.T)),J=1,LK)
                                                                               A2150
      READ(5,3002) ((TCP(J,I),CPX(J,I)),J=1,LCP)
                                                                               A2160
      WRITE(6,432) (XIDNT(K,I),K=1,12)
                                                                               A2170
  432 FORMAT(//12A6)
                                                                               42180
                                                                               42190
      WRITE (6+433)
  433 FORMAT(//20X,7HTHFRMAL,38X,8HSPECIFIC/3X,11HTEMPFRATURE,4X,12HCOND
                                                                               A2200
     1UCTIVITY, 19X, 11HTEMPERATURE, 7X, 4HHEAT)
                                                                               A2210
      KLLL=MIND(LK,LCP)
                                                                               A2220
      00 434 N=1 . KLLL
                                                                               A2230
      WRITE(6,222) (TXK(N,1),XK(N,1),TCP(N,1),CPX(N,1))
                                                                               A2240
  434 CONTINUE
                                                                               A2250
                                                                               A2260
      IF(LK-LCP) 435,440,437
  435 KLLLL=KLLL+1
                                                                               A2270
```

```
DO 436 N=KLLLL,LCP
WRITE(6,224) (TCP(N,T),CPX(N,I))
                                                                               A2280
                                                                               A2290
  436 CONTINUE
                                                                               A2300
                                                                               A2310
      GO TO 440
  437 KLLLL=KLLL+1
                                                                               A2320
      DO 438 NEKLLLLILK
                                                                               A2330
                                                                               A2340
      WRITE(6,226) (TXK(N,1),XK(N,I))
                                                                               A2350
  438 CONTINUE
  440 CONTINUE
                                                                               A2360
      READ(5,3002) (RHORX(L), XBM(L), EMFB(L), EMBR(L), L=1, NMB)
                                                                               A2370
                      (H(J),GAPX(J),FTEST(J),BTFST(J),J=1,NMR)
                                                                               A2380
      READ(5,3002)
      WRITE(6,450)
                                                                               A2390
  450 FORMAT(///55x,10HEMISSIVITY/8X,8HMATERIAL,5X,7HDFNSITY,7X,9HTHICKN
                                                                               A2400
                                                                               A2410
     1FSS,7X,5HFRONT,9X,4HBACK,7X,14HNODES/MATFRIAL/)
                                                                               A2420
      DO 460 LLJ=1.NMP
      WRITE(6,455) LLJ,RHORX(LLJ),XPM(LLJ),FMFR(LLJ),FMRB(LLJ),XNPM(LLJ)
                                                                               A2430
  455 FORMAT(11X,111,8X,1PF10,4,4X,1PE10,4,4X,1PE10,4,4X,1PF10,4,6X,1PF1
                                                                               A2440
                                                                               A2450
     10.4/)
  460 CONTINUE
                                                                               42460
      WRITE(6+465)
                                                                               A2470
  465 FORMAT(//4X+60HADDITIONAL DATA FOR INDIVIDUAL MATERIALS IN BACKUP
                                                                               A2480
     1STRUCTURE//11X,8HMATERIA, 5X,16HFILM COEFFICIENT,5X,13HGAP THICKNE
                                                                               A2490
     255.8X,5HFTEST,13X,5HBTEST)
                                                                               A2500
      DO 480 J=1.NMP
                                                                               A2510
      WRITE(6,470) J. H(J), GAPX(J), FTFST(J), BTEST(J)
                                                                               A2520
  470 FORMAT(13X,113,12X,1PF10.4,9X,1PF10.4,7X,1PE11.4,7X,1PE11.4/)
                                                                               A2530
                                                                               A2540
  480 CONTINUE
C
                                                                               42550
      PROPERTIES OF ENVIRONMENT
                                                                               A2560
  500 RFAD(5,3000) (TITLE(L),L=1,12)
                                                                               A2570
                                                                               A2580
      TF(TITLE(1).EQ.PRVOUS) GO TO 600
                                                                               A2590
      READ(5,3000) (HEADNG(L),L=1,12)
      READ(5,3002) TENV, HENV, FFNV, QLOSS
                                                                               A2600
      wRITE(6,3008) (HFADNG(L),L=1,12)
                                                                               A2610
      WRITE(6,520) TENV, HENV, FFNV, QLOSS
                                                                               A2620
  520 FORMAT(/4X,12HTEMPERATURF=,1PF12.5,4X,17HFILM COFFFICIENT=,1PF12.5
                                                                               A2630
     1.4X,12HVIFW FACTOR=,1PE12.5,4X,7H0 LOST=,1PE12.5)
                                                                               A2640
C
                                                                               42650
      INITIAL TEMPERATURE DISTRIBUTION
                                                                               A2660
  600 READ(5,3000) (TITLE(L),L=1,12)
                                                                               A2670
      TF(TITLE(1).FQ.PRVOUS) GO TO 700
                                                                               A2681
      READ(5,3000) (HEADNG(L),L=1,12)
                                                                               A2690
      NPF=NP+NPRS
                                                                               A2700
      TL=VL+BL
                                                                               A2710
      YNPENP
                                                                               A2720
      DX=VL/(XNP-1.n)
                                                                               A2730
      DXX=DX
                                                                               A2740
      READ(5,3002) TEST2, TEMPI, TX0
                                                                               A2750
      JF(TEST2) 610,620,620
                                                                               A2760
                                                                               A2770
  610 READ(5,3002) (TEMDI(K),K=1,NPF)
      no 615 K=1,NPF
                                                                               A2780
                                                                               A2790
      TX1(K)=TEMDI(K)
                                                                               A2800
      TX2(K)=Tx1(K)
      TUL1(K)=TX1(K)
                                                                               A2810
                                                                               A2820
      TUL2(K)=TX1(K)
                                                                               A2830
  615 CONTINUE
      L=NP+1
                                                                               1284n
```

C

```
00 619 I=1 NMR
                                                                             A2850
    NENPM(I)
                                                                             A2860
                                                                             A2870
    DO 617 J=1.LN
    TX2T(J,I)=TEMDI(L)
                                                                             A2880
    1=L+1
                                                                             A2890
617 CONTINUE
                                                                             A2900
                                                                             A2910
619 CONTINUE
                                                                             4292n
    60 TO 625
620 CALL TEMPD
                                                                             A2930
625 WRITE(6,3008) (HEADNG(L).L=1,12)
                                                                             A2940
    1F(TEST2) 630.635.640
                                                                             A2950
630 WRITE(6,632)
                                                                             A2961
632 FORMAT(4x,52HTEMPERATURE DISTRIBUTION IN HEAT SHIELD IS ARBRITARY/
                                                                             A2970
                                                                             A2980
   1)
    write(6,633) (TEMDI(K), K=1, NPF)
                                                                             A2990
633 FORMAT (1PAE12.5)
                                                                             A3000
    GO TO 645
                                                                             A3010
635 WRITE(6,637) TEMPI
                                                                             A3020
637 FORMAT(//4X)64HTEMPERATURE DISTRIBUTION IN HEAT SHIELD IS UNIFORM
                                                                             A3030
   1AND EQUAL TO ,1PE10.4/)
                                                                             A3040
                                                                             A3050
    GO TO 645
640 WRITE (6,641)
                                                                             A3060
641 FORMAT (4x,54H) INEAR TEMPERATURE DISTRIBUTION ASSUMED IN HEAT SHIFL
                                                                             A3070
                                                                             43080
    WRITE(6,633) (TEMDI(L), L=1, NPF)
                                                                             A3090
645 TF(DMP) 700,700,646
                                                                             A3100
                                                                             A3110
646 WRITE (6,647)
647 FORMAT(//)
                                                                             A3120
648 WRITE(6,649) (TX1(L),TX2(L),L=1,NPF)
                                                                             A3130
649 FORMAT(2X, 1PE12.5, 4X, 1PE12.5)
                                                                             A3140
    WRITE(6,650)
                                                                             A3150
650 FORMAT(//)
                                                                             A3160
                                                                             A3170
    ENTHALPY AS A FUNCTION OF TEMPERATURE
                                                                             A3180
700 READ(5,3000) (TITLE(L),L=1,12)
                                                                             A3190
    #F(TITLE(1).E0.PRVOUS) 60 TO 725
                                                                             A3200
    READ(5:3004) NHP
                                                                             A3210
    READ(5,3002) (HX(K),TW(K),K=1,NHP)
                                                                             A3220
725 no 728 I=1.NP
                                                                             A3230
                                                                             A3240
    TF(I)=0
                                                                             A3250
    TP1(I)=0
                                                                             A3260
    TP2(I)=0
    TFM(I)=0
                                                                             A3270
    XMDG(T)=0.0
                                                                             43280
728 CONTINUE
                                                                             A3290
    WRITE(6,730)
                                                                             A3300
730 FORMAT(1H1,12HOUTPUT DATA,//)
                                                                             A3311
                                                                             43320
    xc(1)=0.0
    DO 740 I=2:NP
                                                                             0555A
    XC(I)=XC(I-1)+DX
                                                                             A3340
                                                                             A3350
740 CONTINUE
750 IF(T-TIME(NK)) 765,770,760
                                                                             A3360
                                                                             A3370
760 NK=NK+1
    TF(NK-NTRAPT) 750,750,762
                                                                             4338n
                                                                             A3390
762 WRITE (6,763) NK
763 FORMAT(1H0,33H THE VALUE OF NK IS IN ERROR, NK=,114)
                                                                             A3400
    GO TO 905
                                                                              A3410
```

```
A3420
  765 IF (NK-2) 762,766,766
  766 GCONX=GCON(NK-1)+((GCON(NK)-GCON(NK-1))/(TIME(NK)-TIMF(NK-1)))
                                                                               A3430
     1*(T-T(ME(NK-1))
                                                                               A3440
      OCONX=FCONV+OCONX
                                                                               43450
      ORADX=QRAD(NK-1)+((GRAD(NK)-GRAD(NK-1))/(TIME(NK)-TIMF(NK-1)))
                                                                               A3460
                                                                               A3470
     1*(T-TIME(NK-1))
      @RADX=FRAD*QRADX
                                                                               A3480
      VFLX=VEL(NK-1)+((VEL(NK)-VEL(NK-1))/(TIMF(NK)-TIMF(NK-1)))
                                                                               A3490
     1*(T-TTME(NK-1))
                                                                               A3500
      GO TO 775
                                                                               A3510
                                                                               A3520
  770 QCONX=FCUNV*QCON(NK)
      ORADX=FRAD*GRAD(NK)
                                                                               A3530
      VFLX=VEL(NK)
                                                                               A3540
C
                                                                               A3550
      COMPUTE HEAT PLOCKAGE AT FRONT SURFACE
                                                                               A3560
  775 TF(I17-1) 778.778.776
                                                                               A3570
  776 TF(I17-NHP) 777,777,778
                                                                               A3580
  777 | | F(TX2(INT)-TW(I17)) | 782,788,780
                                                                               A3590
  778 WRITE(6,779) TX2(INT)
                                                                               43600
  779 FORMAT(1H0,80H THE RANGE OF THE ENTHALPY-TEMPFRATURE CURVE FIT WAS
                                                                               43610
     1FXCEEDED AT A TEMPERATURE OF, 1E10.4)
                                                                               A3620
      GO TO 905
                                                                               A3630
  780 T17=117+1
                                                                               A3640
      60 TO 776
                                                                               A3650
  782 [F(TX2(INT)-TW(I17-1)) 784,788,786
                                                                               A3660
  784 117=117-1
                                                                               43670
                                                                               A3680
      GO TO 775
  786 HW=HX(I17-1)+((HX(I17)-HX(I17-1))/(TW(I17)-TW(I17-1)))
                                                                               43690
     1*(TX2(INT)-TW(I17-1))
                                                                               A3700
      60 TO 789
                                                                               A3710
  788 HW=HX(I17)
                                                                               4372n
  789 HTX=H300+((VFLX**2)/50056.5)
                                                                               A3730
      ORLOCK=(FBLOW*XMDG(INT)*(HTX-HW))/3600.0
                                                                               A3740
                                                                               A3750
C
      COMPUTE HEAT IN DUE TO SURFACE COMBUSTION
                                                                               A3760
C
                                                                               A3770
      xMD0=XMDC
      CALL OXIDAT (XMDO, QOXID)
                                                                               A3780
                                                                               A3790
С
                                                                               A3800
      COMPUTE Q-HOT WALL
C
      IF(TDMP.E0.0.) GO TO 4001
                                                                               A3810
                                                                               A3820
      IF (T.GE.TDMP) DMP=1.0
 4001 7=(HTX-Hw)/(HTX-H300)
                                                                               A3830
      IF(Z-1.0) 790,792,793
                                                                               A3RUN
  790 fF(Z) 791,791,793
                                                                               A3850
                                                                               A3860
  791 OHW=0.0
      60 TO 1790
                                                                               A3870
  792 QHW=QCONX
                                                                               A3BB0
      GO TO 1790
                                                                               A3890
  793 QHW=Z*QCONX
                                                                               A3900
                                                                               A3910
 1790 ZZZ=(QHW-QBLOCK)/QHW
      IF(ZZZ-0.2) 1798,1798,1794
                                                                               A3920
                                                                               A3930
 1798 OPLOCK=0.8*QHW
                                                                               A3940
C
C
      NET HEAT INTO FRONT SURFACE
                                                                               A3950
 1794 IF (IEM(INT)) 795,795,797
                                                                               A3960
  795 tF(TX2(INT)-TCHAR) 796,796,797
                                                                               A3970
                                                                               A3980
  796 FMX=EMV
```

```
A3990
      60 TO 798
  797 TFM(INT)=1
                                                                                A40nn
                                                                                44010
      FMX=EMC
  798 @IN=GRADX+GHW+GOXID-GRLOCK-(4.8333E-13)*FMX*FV*((TX2(INT)**4)-
                                                                                A4020
                                                                                A4030
     1 (TV**4))
      IF(DMP) 804,804,800
                                                                                A4040
  800 WRITE(6,801)
                                                                                A4050
  801 FORMAT(///)
                                                                                44060
      WRITE(6,802) OCONY, ORADY, VELX, HTX, HW, Z, ORLOCK, GHW, GOXTD, GIN
                                                                                ALDTO
  802 FORMAT(1X,6HgCONX=,1PF12.5,2X,6HgRADX=,1PF12.5,2X,5HVFLX=,1PF12.5,
                                                                                A4080
     12x,4HHTX=,1PE12.5,2X,3HHw=,1PF12.5/1X,2H7=,1PF12.5,2X,7HgBLOCK=,1P
                                                                                44090
     2F12.5,2X,4H0HW=,1PE12.5,2X,6H0OXID=,1PE12.5,2X,4H0IN=,1PF12.5/)
                                                                                A4100
  804 GIN=QIN+3600.0
                                                                                A4110
                                                                                A4120
      CHECK FOR FRONT SURFACE RECESSION (CHAR LAYER REMOVAL)
C
                                                                                A4130
      CALL RECESS (XMDC, XLOST, TRFC, DT, RHOC, TS, SR, TX2 (1), NREC, NRS, ERRS, SYO
                                                                                A4140
                                                                                A4150
     1.SDOT, DMP)
                                                                                A4160
      TF(ERRS) 8050.8050.905
 8050 VLV=VLV-XLOST
                                                                                A4170
      XLSTV=XLSTV+XLOST
                                                                                A4180
      XI STI=XLSTV*12.0
                                                                                A4190
      DXV=VLV/(XNP-1.0)
                                                                                A4200
                                                                                A4210
      XV(1)=0.0
      no 1780 I=2.NP
                                                                                44220
      XV(I)=XV(I-1)+DXV
                                                                                A4230
 1780 CONTINUE
                                                                                44240
                                                                                A4250
      nx=Dxv
      TF (ERR4) 806,806,805
                                                                                A4260
  805 GO TO 905
                                                                                A4270
  806 CALL COEFF(NPFT, SDOT)
                                                                                842RA
      IF(DMP) 8069,8069,8061
                                                                                A4290
 8061 WRITE (6:8062)
                                                                                A4300
 8062 FORMAT(/1X+23H COEFFICIENTS FOR SWUFT/)
                                                                                A4310
      DO 8066 I=1.NPFT
                                                                                A4320
      WRITE(6,8064) A(I),R(I),C(I),D(I),I
                                                                                A4330
 8064 FORMAT(1H0,5HA(I)=,1PF12.5,2X,5HB(I)=,1PF12.5,2X,5HC(I)=,1PE12.5.2
                                                                                A4340
     1x,5HD(I)=,1PE12.5,2X,2HI=,13)
                                                                                A4350
 8066 CONTINUE
                                                                                A4360
 8069 TF(ERR2) 807,807,805
                                                                                A4370
  807 (F(ERR3) 810,810,808
                                                                                A4380
  808 WRITE(6,809) TKK
                                                                                A4390
  809 FORMAT (1HO: 18H THE VALUE OF IKK=,114)
                                                                                A4400
      GO TO 905
                                                                                A4410
  810 CALL SWUFT(A,R,C,D,TY,NPFT,DMP)
                                                                                A4420
  827 DO 828 I=1.NP
                                                                                A4430
      TX1(I)=TX2(I)
                                                                                A4450
      TX2(I)=TY(I)
                                                                                A4460
  828 CONTINUE
      CALL DON2(XLOST, XV, TX2, NP, XC, TX2C, XDV, KKV, XLSTV, DXX)
                                                                                A4470
                                                                                A4480
  830 CALL ABLATE
                                                                                A4490
      XMDT=XMDG(INT)+XMDC
                                                                                A4500
      LT=NP+1
      no 1815 I=1.NMB
                                                                                44510
      ILT=NPM(1)
                                                                                A4520
      TF(I.FQ.1) GO TO 1812
                                                                                A4531
      IF(GAPX(I-1),FQ.0.) GO TO 1812
                                                                                A4540
                                                                                A4550
      KKT=1
```

```
GO TO 1813
                                                                              #456n
1812 KKT=2
                                                                              A4570
1813 NO 1815 J=KKT.LLT
                                                                              A4580
     (TJ)YT=(I,U)TSXT
                                                                              44590
     1. T=LT+1
                                                                              A4600
1815 CONTINUE
                                                                              A4610
     DO 1819 I=1.NMB
                                                                              A4620
     TF(I.FQ.1) GO TO 1816
                                                                              A4630
     TF(GAPX(I-1),FQ.0.) GO TO 1817
                                                                              A4640
     GO TO 1819
                                                                              A4650
1816 TX2T(1,1)=TY(NP)
                                                                              A4660
     GO TO 1819
                                                                              44670
1817 LX=NPM(I-1)
                                                                              ALKAN
     TX2T(1,I)=TX2T(LX,I-1)
                                                                              44690
1819 CONTINUE
                                                                              A4700
     I MENP+1
                                                                              A4710
     DO 833 I=1.NMR
                                                                              A4720
     LZ=NPM(I)
                                                                              44730
     no 833 J=1.LZ
                                                                              A4740
     TX2(LM)=TX2T(J,I)
                                                                              A4750
                                                                              A4760
     I MELM+1
833 CONTINUE
                                                                              64770
     DO 5834 I=2.NPTT
                                                                              4478R
     TF(T-TTABLE(1)) 5835,5835,5834
                                                                              A4790
5835 nTS=DFLTT(I-1)
                                                                              A4800
     TPRCT=IPRC(I=1)
                                                                              A4810
     DT=DELTT(T-1)/3600.0
                                                                              A4820
     GO TO 5836
                                                                              44830
5834 CONTINUE
                                                                              A4840
     DTS=DELTT (NPTT)
                                                                              A4850
     TPRCT=IPRC(NPTT)
                                                                              A4860
     DT=DELTT(NPTT)/3600.0
                                                                              AURTO
5836 rCT=ICT+1
                                                                              AUBBO
5838 VLTEM=SAVY3
                                                                              A4890
     CALL TSOTHM(XV+TX2+1060. ,NP+SAVEIT)
                                                                              A4900
     SAVEIT=SAVEIT+XLSTV
                                                                              A4910
     TF(SAVY3.LT.SAVEIT)SAVY3=SAVEIT
                                                                              A4921
     IF (VLTEM.FQ.SAVY3)GO TO 839
                                                                              44930
     SAVXET
                                                                              VTOTU
     SAVY1=XLSTI
                                                                              A4950
     SAVY2=TX2(NP)
                                                                              A4960
     CALL ISOTHM(XV.TX2.1460.,NP.SAVY4)
                                                                              A4970
839 BLTEM=SAVY4X
                                                                              44980
     CALL ISOTHM(XV, TX2, 1460., NP, WFKFFP)
                                                                              A4990
     WFKEEP=WEKEEP+XLSTV
                                                                              A5000
     TF (SAVY4X.LT.WEKEFP) SAVY4X=WEKEFP
                                                                              45010
     IF (BLTEM. EQ. SAVY4X) GO TO 838
                                                                              A5020
     SAVEXX=T
                                                                              A5030
     SAVY1X=XLSTI
                                                                              A5040
     SAVY2X=TX2(NP)
                                                                              A5050
     CALL ISOTHM(XV+TX2+1060.,NP+SAVY3X)
                                                                              A5060
838 CONTINUE
                                                                              A5070
     IF(IPRCT=ICT) 835,835,840
                                                                              A5080 &
                                                                              A5090 8
835 WRITE(6,837) T. QCONX, QRADY, VELX, XMDG(INT), XMDC, XMDT, XLSTI, QHW
837 FORMAT(1H0.5HTIME=,
                                                                              A5100
                        1PF12.5.2X.12HQCONVFCTIVE=.1PF12.5.2X.11HQRADIAT
                                                                              A5110
    1
    11VE=,1PE12.5,2X,9HVELOCITY=,1PE12.5/1X,1AHGAS APLATION RATE=,1PF12
                                                                              A5120
```

```
2.5.2X,19HCHAR ARLATION RATE=,1PF12.5,2X,20HTOTAL ABLATION RATE=,1P
                                                                                A5130
    3F12.5/1X.16HRFCFSSION DEPTH=.1PF12.5.2X.10HQHOT WALL=.1PE12.5)
                                                                                45140
840 T=T+DTS
                                                                                A5150
841 TF(NPLOT.NE.1) GO TO 842
                                                                                A5160
     CALL SAVE(ASAVE1, ASAVF2, ASAVF3, USEA, NYA, XLSTI, DTS, TLIM, T, VALUFA)
                                                                                A5170
     CALL SAVE (BSAVE1, RSAVF2, RSAVF3, USFB, NXB, TX2(NP), DTS, TI IM, T, VALUFR)
                                                                                45180
     CALL ISOTHM(XV,TX2,1060.,NP,Y3)
                                                                                A5190
     CALL SAVE(CSAVE1, CSAVF2, CSAVF3, USEC, NXC, Y3, DTS, TI, IM, T, VALUEC)
                                                                                A5200
     CALL ISOTHM(XV,TX2,1460.,NP,Y4)
                                                                                4521A
     CALL SAVE (DSAVE1, DSAVE2, DSAVE3, USED, NXD, Y4, DTS, TLIM, T, VALUED)
                                                                                A5220
     TF(USFA.NF.0.n)GO TO 9842
                                                                                A5230
     TF(USFB.NF.0.0)G0 TO 9842
                                                                                A5240
     IF(USFC.NF.0.0)G0 TO 9842
                                                                                45250
     TF (USFD.NF.0.n)GO TO 9842
                                                                                A5260
     GO TO 9843
                                                                                A5270
                                                                                A5280
9842 XPLOT=T-DTS
                                                                                A5290
     YPLOT1=VALUEA
     IF (USFA.NF.D.A) YPLOT1=USFA
                                                                                45300
     YPLOT2=VALUER
                                                                                A5310
     TF (USFB.NF.O.n) YPLOT2=USFP
                                                                                A5320
     YPLOT3=VALUEC
                                                                                A5330
     TF (USFC.NF.O.0) YPLOT3=USEC
                                                                                A5340
     YPLOT#=VALUED
                                                                                A5350
     TF(USFD.NF.0.0)YPLOT4=USFD
                                                                                A5360
     WPITE (11) XPLOT, YPLOT, YPI OT2, YPI OT3, YPLOT4
                                                                                A5370
9843 (F(ICTP.NF.0) GO TO 842
                                                                                A5380
                                                                                A5390
     TCTP=1
     XPLOT=T
                                                                                A5400
     YPLOT1=XLSTI
                                                                                A5410
     YPLOT2=TX2(NP)
                                                                                A5420
     CALL TSOTHM(XV+TX2+1060.,NP+YPLOT3)
                                                                                A5430
     CALL ISOTHM(XV,TX2,1460,,NP,YPLOT4)
                                                                                A5440
     WRITE (11) XPLOT, YPLOT1, YPLOT2, YPLOT3, YPLOT4
                                                                                45450
 842 TF(IPPCT-TCT) 845,845,900
                                                                                A5460
845 WRITE(6+850) T
                                                                                A5470
     TPCT=TPCT+1
                                                                                45480
     TF (IPCT.EQ.2) TPCT=0
                                                                                45490
     IF (IPCT.ER.O) JCTP=0
                                                                                A5500
 850 FORMAT(1HO,72HTEMPERATURE DISTRIBUTION IN HEAT SHIELD AT THE FND O
                                                                                A5510
    IF THE TIME STEP, T= .1PE12.5,1X,7HSECONDS//)
                                                                                A5520
     WRITE (6,860)
                                                                                A5530
 860 FORMAT(4X,49HTEMPFRATURE DISTRIBUTION IN THE ABLATING MATERIAL//)
                                                                                A5540
     KKV=KKV+1
                                                                                A5550
     wPITE(6,862) (TX2C(I), I=1, KKV)
                                                                                A5560
 862 FORMAT(6x,1PF12.5,1P5F16.5)
                                                                                A5570
     IJ=NP+1
                                                                                A5580
     WRITE (6,864)
                                                                                A5590
 864 FORMAT(//4X:49HTEMPERATURE DISTRIBUTION IN THE BACK-UP STRUCTURE//
                                                                                A5600
                                                                                A5610
     WRITE(6,862) (TX2(I), T=IJ,NPF)
                                                                                A5620
                                                                                A5630
     WRITE(6,865)
 865 FORMAT(//)
                                                                                A5640
                                                                                A5650
     TCT=0
900 CONTINUE
                                                                                A5660
     IF(T-TLIM) 750,750,905
                                                                                A5670
905
    TF(NPLOT.NE.1) GO TO 909
                                                                                A5680
     XAVY3=SAVY3-SAVY1/12.
                                                                                A5690
```

	XAVY4X=SAVY4X+SAVY1X/12. TF(SAVX.EG.XPLOT)GO TO 9005	45700 45710
	WRITE(11)SAVX,SAVY1,SAVY2,XAVY3,SAVY4	A5720
9005	TF(SAVEXX,EQ,XPLOT)GO TO 9006	A5730
70113	SAV4I=SAVY4X*12.	A5760
9006	SAV3I=SAVY3*12.	A5750
7000	WRITE(11)SAVEXX,SAVY1X,SAVY2X,SAVY3X,XAVY4X	A5740
	WRITE(6,929)SAV31,SAV41	A5770
929	FORMAT(1H0,23HMAXIMUM 1060 ISOTHERM =E16.8,2X23HMAXIMUM 1460 ISOTH	A5780
	1FRM =F16.8)	A5790
	WRITE (11)STOP,STOP,STOP,STOP	A5800
909	TF (LPLOT.NE.NCASE) GO TO 911	A5810
	DATA END/6H FND /	A5820
	WRITE(11) FND, FND, FND, FND, FND, END, FND, FND, FND, FND, FND	A5830
	QUIT=8888.	A5840
	WRITE(11)GUIT.GUIT.GUIT.GUIT	A5850
	FND FILE 11	A5860
	REWIND 11	A5870
911	TF(TEST2) 910,930,930	A5880
910	no 920 JJK=1,NPF	A5A9n'
	TX1(JJK)=TEMD1(JJK)	A5900'
	TX2(JJK)=TX1(JJK)	A5910
	T(IL1(K)=TX1(K)	A5921
	TUL2(K)=TX1(K)	A593n
920	CONTINUE	A5940
	TL=NP+1	A5950
	DO 926 I=1 • NMP	A5960
	TI N=NPM(1)	A597n
	no 924 J=1.ILN	A5980
	TX2T(J,I)=TFMDI(IL)	A5990
	TL=IL+1	A6000
	CONTINUE	A6010
926	CONTINUE	A6020
	GO TO 940	A6030
	CALL TEMPO	A6040
940	TETINT	A6050
	DX=DXX	A6060
	nts=DFLTT(1)	A6070
	DT=DELTT(1)/3600.0	A6080
	VI. V=VL	A6090
	GO TO 50	A6100
	END	A6110

```
SIBETC COEF
C THIS SUBROUTINE DETERMINES THE COEFFICIENTS OF THE MATRIX
                                                                                                                                           R0000
                                                                                                                                           RODIA
           SUBROUTINE COFFE (NPFT, SDOT)
                                                                                                                                           R0020
                                                                                                                                           BOOSO
          DIMENSION TITLE(12), HFADNG(12), XIDNT(12,12), TKC(20), XKC(20),
                                                                                                                                           R00#0
         1cPc(2n),TKV(2n),XKV(2n),TcPV(20),CPV(20),TIME(3nn),QcoN(3n0),
                                                                                                                                           P0050
         20RAD(300),VEL(300),XNPM(12),NKPP(12),NCPR(12),TXK(20,12),XK(20,12)
                                                                                                                                           80060
         3,TCP(20,12),CPX(20,12),RHOBX(12),XBM(12),FMFB(12),EMBB(12),HXX(12)
                                                                                                                                           P0070
         4.GAPX(12).FTEST(12).BTEST(12).TEMDI(200).TX1(200).TX2(200).
                                                                                                                                           PODAD
         5TX2T(10,12),THL1(200),THL2(200),HX(50),TW(50),IR(50),IR1(50),
                                                                                                                                           R0090
         6TR2(50).TUL(50).IEM(50).TY(200).A(200).B(200).C(200).D(200).
                                                                                                                                           P0100
         7r(5n),RH0(5n),CP(5n),DXP(12),XKP(10,12),CPB(1n,12),XMDG(5n),
                                                                                                                                           P0110
         8yk(50),AB(10,12),RB(10,12),CB(10,12),DB(10,12),SB(10,12),
                                                                                                                                           R0120
         9RP1(10,12),RP2(10,12),H(12),S(50),NPM(12)
                                                                                                                                           R0130
           DIMENSION TTUE (50) , RHOY1 (50) , RHOY2 (50) , DRHO (50) , TCPC (20)
                                                                                                                                           R0140
C
                                                                                                                                           P0150
           COMMON TKC, XKC, TCPC, CPC, TKV, XKV, TCPV, CPV, XNPM, RHOBX, XRM, FMBB,
                                                                                                                                           P0160
         1FMFB,NKPB,NCPR,TXK,XK,TCP,CPX,NPM,GAPX,FTFST,RTEST,TEMDI,TX1,
                                                                                                                                           R0170
         2TX2.TX2T.TUL.TUL1.TUL2.IR, IR1.IR2.A.B,C.D.S,R,AR.BB.CR.DB.SR.
                                                                                                                                           P0180
         3RP1,RB2,1Y,RH0Y1,RH0Y2,XMDG,RH0,CP,YK,XKB,CPB,DXB,DT,XLOST,
                                                                                                                                           P0190
         4TABL, TCHAR, TRFC, RHOV, RHOC, FBLOW, FMV, EMC, H300, MKC, NCPC, NKV, NCPV,
                                                                                                                                           P0200
         5NP,NMB,NPBS,NPF,TEST2,TEMPI,TX0,TENV,HENV,FENV,QLOSS,TLIM,TINT
                                                                                                                                           P0210
           COMMON II, I2, I3, I4, I5, I6, OIN, INT, DX, XMT, TL, VL, BL, DMP, FRR1, ERR2,
                                                                                                                                           P0220
         1FRR3, FRR4, HV, VPT, CHARK, CHARC, ABLK, ABLC, XMDC, H
                                                                                                                                           R0230
                                                                                                                                           P0240
          CALL PROP
                                                                                                                                           P0250
           YNP=NP
                                                                                                                                           P0260
           S(INT)=(RHO(INT)*DX*CP(INT))/(2*0*DT)
                                                                                                                                           P0270
           R(INT)=(1.0)/((DX/2.0)*((1.0/YK(INT))+(1.0/YK(INT+1))))
                                                                                                                                           R0280
           A(INT)=0.0
                                                                                                                                           P0291
           R(INT)=(-(XMDG(INT)+XMDC)+CP(INT)+S(INT)+R(INT)-RHO(INT)+CP(INT)
                                                                                                                                           B03nn
         1*(SDOT/(2.0*(YNP-1.0))))
                                                                                                                                           R0310
           C(INT)=XMDG(INT+1)*CP(INT+1)+P(INT)+P(INT+1)*CP(INT+1)*SDOT
                                                                                                                                           P0320
         1*(YNP-1.5/(YNP-1.0))
                                                                                                                                           P0330
           D(INT)=(-(QIN+S(INT)*TX2(TNT))) +(XMDG(INT)-XMDG(INT+1))*HV
                                                                                                                                           P0341
           NPP=NP-1
                                                                                                                                           P0350
           JNT=INT+1
                                                                                                                                           P0360
           DO 10 I=UNT,NPP
                                                                                                                                           P0370
           XI=I
                                                                                                                                           P0380
           S(I)=(RHO(I)*DX*CP(I))/DT
                                                                                                                                           P0390
           R(I)=(1.0)/((DX/(2.0*YK(T)))+(DX/(2.0*YK(T+1))))
                                                                                                                                           P0400
           \Delta(I)=R(I-1)
                                                                                                                                           P0410
           A(I) = (-(XMDG(T) * CP(I) + R(T-1) + P(I) + S(I) + RHO(I) * CP(I) * SDOT*((YMP-YT) + RHO(I) * CP(I) * SDOT*((YMP-YT) + RHO(I) * CP(I) * CP(I
                                                                                                                                           R0420
         1-0.5)/(YNP-1.0))))
                                                                                                                                           P0430
           C(I)=XMDG(I+1)*CP(I+1)+P(I)+PHO(I+1)*CP(I+1)*SDOT*((YNP-XI-0.5))
                                                                                                                                           B0440
         1/(YNP-1.0))
                                                                                                                                           P0450
          n(I)=(-(S(I)*TX2(I))) + (xMDG(I)-xMDG(I+1))*HV
                                                                                                                                           P0460
     10 CONTINUE
                                                                                                                                           P0470
                                                     /(2.0*XKB(1:1)))+(DXB(1) /(2.0*XKB(2:1))))
           R(NP)=(1.0)/((DXB(1))
                                                                                                                                           R0480
           5(NP)=(RHO(NP)*DX*CP(NP)*RHORX(1)*CPR(1,1)*DYB(1))/(2,0*DT)
                                                                                                                                           R0490
           \Delta(NP)=R(NP-1)
                                                                                                                                           R0500
           A(NP) = (-(XMDG(NP) * CP(NP) + R(NP-1) + R(NP) + S(NP)))
                                                                                                                                           P0510
           C(NP)=R(NP)
                                                                                                                                           P0520
           D(NP) = (-S(NP) * TX2(NP)) + XMDG(NP) * HV
                                                                                                                                           P0530
           00 200 I=1 NMP
                                                                                                                                           P0540
           IF(I-1) 20,20,30
                                                                                                                                           P0550
     20 AR(1,T)=A(NP)
                                                                                                                                           B0560
```

```
P0570
    RR(1,1)=B(NP)
                                                                           POSAN
    CP (1, T) = C (NP)
    DP(1,1)=D(NP)
                                                                           P0590
    60 TO 65
                                                                           P0600
 30 L=NPM(I-1)
                                                                           P0610
    IF(FTFST(T)) 45,40,45
                                                                           R0620
 40 SR(1,T)=(RHORY(I)*CPR(1,T)*DXP(I)+RHORX(I-1)*CPR(L,I-1)*DXB(I-1))/
                                                                           P0630
                                                                           RUNAU
   1(2.0*DT)
    RR1(1,I)=(1.0)/((DXB(I-1)/(2.0*XKB(L,I-1)))+(DXB(I-1)/(2.0*XKP(L-1))
                                                                            P0650
                                                                            R0660
   1.1-1))))
    RP2(1,I)=(1.0)/((DXB(I)/(2.0*XKB(1,I)))+(DXB(I)/(2.0*XKB(2,I))))
                                                                           P0670
    AR(1,T)=RP1(1,I)
                                                                           PO6A0
                                                                           R0690
    BB(1,I)=(-(RB1(1,I)+RB2(1,I)+SB(1,I)))
                                                                           P0700
    CP(1,T)=RP2(1,I)
    OR(1,T)=(-(SR(1,I)*TX2T(1,I)))
                                                                           R0710
                                                                           P0720
    60 TO 65
 45 IF (FTFST(I)) 50,40,55
                                                                           P0730
 50 G=(1.73E-09)/(1.0/EMBR(I-1)+1.0/FMFR(I)-1.0)
                                                                           POTAN
                                                                           P0750
    GO TO 60
 55 G=0.0
                                                                           P0760
 6U <P(1,T)=(RHOBY(I)+CPB(1,T)+DXP(I))/(2.0+DT)
                                                                           P0770
    RP2(1,I)=(1.0)/((DXB(T)/(2.0*XKP(1,I)))+(DXB(I)/(2.0*XKP(2,I))))
                                                                           RO7A0
                                                                           B0790
    AP(1,1)=H(I-1)+4.0*G*(TX2T(L,I-1)**3)
    RP(1,T)=(-(H(T-1)+4.0*G*(TX2T(1,T))**3)+RB2(1,T)+SB(1,T)))
                                                                            B0800
    CP(1,T)=RP2(1,I)
                                                                            B0810
    DP(1,T)=3.0*G*((TX2T(1,T-1)**4)-(TX2T(1,T)**4))-SP(1,T)*TX2T(1,T)
                                                                           P0820
 65 [F=NPM(I)-1
                                                                            B0830
                                                                            BOBAD
    00 100 J=2.LF
                                                                           P0850
    SP(J,T)=(RHOBY(I)*CPB(J,T)*DXP(I))/DT
    RP1(U,I)=(1.0)/((DXB(I)/(2.0*XKB(U-1.I)))+(DXP(I)/(2.0*XKP(U,I))))
                                                                           R0860
    RP2(J,I)=(1.0)/((DXB(T)/(2.0*XKB(J+1.I)))+(DXB(I)/(2.0*XKB(J,I))))
                                                                            R0870
    AR(J,I)=RR1(J,I)
                                                                            PRARIA
    AP(J,T)=(-(RB1(J,T)+RB2(J,I)+SB(J,I)))
                                                                            R0890
    CP(J,T)=RP2(J,I)
                                                                            R0900
                                                                            P0910
    DP(J,T)=(-(SR(J,I)*TX)T(J,I))
                                                                            P0920
100 CONTINUE
    TF(I=NMR) 110,250,250
                                                                            R0930
110 LNF=NPM(I)
                                                                            P0940
    TF(BTEST(I)) 120,115,120
                                                                            P0951
115 SP(LNF,I)=(RHOBX(I)*CPB(LNF,I)*DXP(I)+RHOPX(I+1)*CPB(1,I+1)*DXB(T+
                                                                            R0960
                                                                            P0970
   11))/(2.0*DT)
    RP1(LNF,I)=(1.0)/((DxR(I)/(2.0*XKB(LNF-1.I)))+(DxB(I)/(2.0*XKP(LNF-1.I)))
                                                                            RAPAR
                                                                            P0990
   1, ((()))
    RP2(LNF,I)=(1.0)/((DXR(I+1)/(2.0*XKB(1*I+1)))+(DXR(I+1)/
                                                                            P1000
   1(2,0*XKB(2,I+1))))
                                                                            P1010
    AR(LNF,I)=RB1(LNF,I)
                                                                           P1020
    BB(LNF,I)=(-(RB1(LNF,I)+RP2(LNF,I)+SB(LNF,I)))
                                                                           P1030
    CP(LNF,I)=RB>(LNF,I)
                                                                           P1040
    DP(LNF,I)=(-(SB(LNF,I)*TX2T(LNF,I)))
                                                                           R1050
                                                                           P1060
    GO TO 200
120 (F(BTEST(I)) 125,115,127
                                                                           P1070
125 G=(1.73E-09)/(1.0/EMRR(I)+1.0/EMFB(I+1)-1.0)
                                                                           P1080
    60 TO 130
                                                                           P1090
127 6=0.0
                                                                           R1100
130 SP(LNF,I)=(RHOBX(I)*CPB(|NF,I)*DXB(I))/(2.0*DT)
                                                                           P1110
    RR1(LNF+I)=(1.0)/((DxR(I)/(2.0*XkR(LNF-1.T)))+(DxR(I)/(2.0*XkR(LNF-1.T)))
                                                                           P1120
                                                                            P1130
   1, (())))
```

```
AR(LNF,I)=RR1(LNF,I)
                                                                                                                                                                    R1140
         RP(LNF,I)=(-(PB1(LNF,I)+H(I)+SB(LNF,I)+4.0*G*(TX2T(LNF,I)**3)))
                                                                                                                                                                    P1150
                                                                                                                                                                    B1160
         CP(LNF_*I) = H(I) + 4.0 + G + (TX > T(1,T+1) + +3)
        DP(LNF,1)=3.0+G+((TX>T(1,1+1)++4)-(TX2T(1NF,1)++4))-SP(LNF,1)+TX>T
                                                                                                                                                                    P1170
                                                                                                                                                                    81180
       1(LNF.T)
200 CONTINUE
                                                                                                                                                                    B1190
250 MN=NPM(NMR)
                                                                                                                                                                    B1200
                                                                                                                                                                    B1210
         IF(QLOSS) 270,260,270
260 SP(MN,NMB)=(RHORX(NMR)+CPP(MN,NMR)+DXP(NMP))/(2,0+DT)
                                                                                                                                                                    R1220
         RP1(MN,NMR)=(1.0)/((DXB(NMB)/(2.*XKR(MN-1,NMB)))+(DXR(NMB)/(2.0*XK
                                                                                                                                                                    P1230
       18(MN, NMR))))
                                                                                                                                                                    R1240
         AB (MN, NMB) =PR1 (MN, NMR)
                                                                                                                                                                    R1250
         RP(MN,NMb)=(-(RP1(MN,NMR)+SB(MN,NMB)))
                                                                                                                                                                    P1260
                                                                                                                                                                    P1270
         CR(MN.NMB)=0.0
         DP(MN, NMB)=(-(SP(MN, NMB)*TX2T(MN, NMB)))
                                                                                                                                                                    B1280
                                                                                                                                                                    P1290
         60 TO 280
270 SR(MN,NMB)=(RHORX(NMR)*CPP(MN,NMR)*DXR(NMP))/(2.0*DT)
                                                                                                                                                                    P1300
         RP1(MN+NMR)=(1+0)/((DXB(NMB)/(2+0*XKB(MN+1+NMR)))+(DXP(NMR)/(2+0*XKB(MN+1+NMR)))+(DXP(NMR)/(2+0*XKB(MN+1+NMR)))+(DXP(NMR)/(2+0*XKB(MN+1+NMR)))+(DXP(NMR)/(2+0*XKB(MN+1+NMR)))+(DXP(NMR)/(2+0*XKB(MN+1+NMR)))+(DXP(NMR)/(2+0*XKB(MN+1+NMR)))+(DXP(NMR)/(2+0*XKB(MN+1+NMR)))+(DXP(NMR)/(2+0*XKB(MN+1+NMR)))+(DXP(NMR)/(2+0*XKB(MN+1+NMR)))+(DXP(NMR)/(2+0*XKB(MN+1+NMR)))+(DXP(NMR)/(2+0*XKB(MN+1+NMR)))+(DXP(NMR)/(2+0*XKB(MN+1+NMR)))+(DXP(NMR)/(2+0*XKB(MN+1+NMR)))+(DXP(NMR)/(2+0*XKB(MN+1+NMR)))+(DXP(NMR)/(2+0*XKB(MN+1+NMR)))+(DXP(NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)/(2*NMR)
                                                                                                                                                                    P1310
       1kB(MN,NMB))))
                                                                                                                                                                    P1320
         AP (MN. NMB) =RR1 (MN. NMR)
                                                                                                                                                                    P1330
         RP(MN,NMB)=(-(RP1(MN,NMP)+HENV+(1.73E-09)*FFNV*4.0*(TX2T(MN,NMB)**
                                                                                                                                                                    R1340
                                                                                                                                                                    R1350
       13)+SB(MN,NMB)))
                                                                                                                                                                    P1360
         CP(MN,NMB)=0.0
                                                                                                                                                                    P1370
         DR(MN,NMB)=(-(HFNV*TFNV+FFNV*(1.73E-09)*((TENV**4)+3.0*(TX2T(MN,NM
                                                                                                                                                                    P1380
       1R) **4) ) + SR(MN, NMB) *TX2T(MN, NMP) ) )
                                                                                                                                                                    R1390
290 | =NP+1
         00 300 I=1.NMP
                                                                                                                                                                    P1400
         K=NPM(I)
                                                                                                                                                                    P1410
                                                                                                                                                                    P1420
         TF(I.FQ.1) GO TO 282
                                                                                                                                                                    P1430
         TF(GAPX(I-1),FQ.0.) GO TO 282
                                                                                                                                                                    R1440
         KT=1
         60 TO 285
                                                                                                                                                                    P1450
282 KT=2
                                                                                                                                                                    P1460
                                                                                                                                                                    P1470
285 DO 290 J=KT+K
         A(L)=AB(J,I)
                                                                                                                                                                    P1480
                                                                                                                                                                    P1490
         H(L)=RB(J,I)
                                                                                                                                                                    P1500
         C(L)=CB(J,I)
                                                                                                                                                                    R1510
         D(L)=DB(J.I)
         TF (DMP) 289,289,286
                                                                                                                                                                    P1520
286 WRITE(6,287) AB(J,I),RB(J,I),CB(J,I),DB(J,I),J,I,A(L),B(L),C(L),D(
                                                                                                                                                                    P1530
                                                                                                                                                                     R1540
       11).L
287 FORMAT(1H0,8H4B(J,I)=,1PF12.5,2X,8H8B(J,T)=,1PE12.5,2X,8HCB(J,I)=,
                                                                                                                                                                     R1550
                                                                                                                                                                     P1560
       11PE12.5,2X,8HDB(J,I)=,1PF12.5,2X,2HJ=,I3,2X,2HI=,I3/1X,5HA(L)=,1PF
       212.5,2X,5HB(L)=,1PE12.5,2X,5HC(L)=,1PF12.5,2X,5HD(L)=,1PF12.5,2X,2
                                                                                                                                                                     P1570
                                                                                                                                                                     P1580
       3HL = , I3)
289 I=L+1
                                                                                                                                                                     P1590
                                                                                                                                                                     P1600
290 CONTINUE
                                                                                                                                                                     P1610
 300 CONTINUE
                                                                                                                                                                     P1620
         NPFT=L-1
                                                                                                                                                                     P1630
         RETURN
                                                                                                                                                                     P1640
         FND
```

```
SIBFTC PRP
                                                                                C0000
      THIS SUBROUTINE DETERMINES THE PHYSICAL PROPERTIES OF THE
                                                                                C0010
C
        HEAT SHIELD STRUCTURE
                                                                                00020
      SUBROUTINE PROP
                                                                                C0030
C
                                                                                C0040
                                                                                C0050
      DIMFNSION TITLE(12), HFADNG(12), XIDNT(12, 12), TKC(20), XKC(20),
     1CPC(20),TKV(20),XKV(20),TCPV(20),CPV(20),TIME(300),QCON(300),
                                                                                C0060
     20RAD(300), VFL(300), XNPM(12), NKPB(12), NCPB(12), TXK(20,12), XK(20,12)
                                                                                C0070
     3.TCP(20,12),CPX(20,12),RHOBX(12),XBM(12),FMFB(12),EMBR(12),HXX(12)
                                                                                CORRO
     4,GAPX(12),FTFST(12),RTEST(12),TEMDI(200),TX1(200),TX2(200),
                                                                                C0090
     5TX2T(10,12),TUL1(200),TUL2(200),HX(50),TW(50),IR(50),TR1(50),
                                                                                C0100
                                                                                C0110
     6TR2(50),TUL(50),IEM(50),TY(200),A(200),B(200),C(200),D(200),
     7R(50),RHO(50),CP(50),DXP(12),XKP(10,12),CPB(10,12),XMDG(50),
                                                                                C0120
     8YK(50), AB(10.12), BB(10,12), CB(10.12), DB(10,12), SB(10,12),
                                                                                C0130
     9RP1(10,12),RR2(10,12),H(12),S(50),NPM(12)
                                                                                C0140
      DIMENSION TTUL (50) , RHOY1 (50) , RHOY2 (50) , DRHO (50) , TCPC (20)
                                                                                C0150
C
                                                                                C0160
      COMMON TKC, XKC, TCPC, CPC, TKV, XKV, TCPV, CPV, YNPM, RHORX, XPM, FMBR,
                                                                                C0170
     1FMFR,NKPB,NCPR,TXK,XK,TCP,CPX,NPM,GAPX,FTFST,RTEST,TEMDI,TX1,
                                                                                C0180
     2TX2,TX2T,TUL,TUL1,TUL2,IR,IR1,IR2,A,B,C,n,S,R,AR,RB,CR,DR,SR,
                                                                                C0190
     3RP1, RP2, TY, RHOY1, RHOY2, XMDG, RHO, CP, YK, XKB, CPB, DXB, DT, XLOST,
                                                                                C0200
     4TABL, TCHAR, TRFC, RHOV, RHOC, FBLOW, FMV, EMC, H300, NKC, NCPC, NKV, NCPV,
                                                                                C0210
     5NP,NMR,NPRS,NPF,TEST2,TEMPI,TX0,TENV,HENV,FENV,QLOSS,TLIM,TINT
                                                                                C0220
      COMMON II, I2, T3, I4, I5, I6, QIN, TNT, DX, XMT, TL, VL, BL, DMP, FRR1, ERR2,
                                                                                C0230
                                                                                C0240
     1FRR3, FRR4, HV, VPT, CHARK, CHARC, ABLK, ABLC, XMDC, H
C
                                                                                C0250
                                                                                C0260
      KINT=INT
      DO 170 I=KINT, NP
                                                                                C0270
   10 TF(IR(I)) 12,12,100
                                                                                C0280
   12 TUL(I)=AMAX1(TX1(I),TX2(I))
                                                                                C059U
      TF(TUL(I).LF.TARL) GO TO 20
                                                                                C0300
      TP(I)=1
                                                                                C0310
                                                                                C0320
      GO TO 100
                                                                                C0330
   20 TF(I1-1) 25,25,21
   21 IF(I1-NKV) 22,22,25
                                                                                C0340
   22 tF(TX2(I)-TKV(I1)) 35,55,30
                                                                                C0350
                                                                                C0360
   25 WRITE(6,26) TY2(I)
   26 FORMAT(1H0+87H THE RANGE OF ONE OF THE ABLATION PROPERTY CURVE FIT
                                                                                C0370
     19 WAS EXCEEDED AT A TEMPERATURE OF ,1PE12.5)
                                                                                C0380
                                                                                C0390
      FRR2=1.0
                                                                                C0400
      GO TO 355
   30 T1=I1+1
                                                                                C0410
                                                                                C0420
      GO TO 21
   35 TF(TX2(I)-TKV(I1-1)) 40,55,50
                                                                                C0430
                                                                                COULO
      GO TO 20
                                                                                C0450
   50 YK(I)=XKV(I1-1)+((XKV(I1)-XKV(I1-1))/(TKV(I1)-TKV(I1-1)))
                                                                                C0460
     1*(TX2(I)-TKV(T1-1))
                                                                                C0470
      GO TO 60
                                                                                C0480
   55 YK(I)=XKV(I1)
                                                                                C0490
   60 TF(12-1) 25,25,61
                                                                                C050n
   61 IF(I2-NCPV) 62,62,25
                                                                                C0510
   62 TF(TX2(I)-TCPV(I2)) 70,85,65
                                                                                C0520
                                                                                C0530
   65 12=12+1
      GO TO 61
                                                                                C0540
   70 TF(TX2(I)=TCPV(I2-1)) 75,85,80
                                                                                00550
   75 12=12-1
                                                                                C0560
```

```
GO TO 60
                                                                               C0570
   A0 CP(I) = CPV(I2-1) + ((CPV(I2) - CPV(I2-1)) / (TCPV(I2) - TCPV(I2-1)))
                                                                               C0580
     1*(TX2(I)-TCPV(I2-1))
                                                                               C0590
      60 TO 90
                                                                               C0600
   85 CP(I)=CPV(I2)
                                                                               C0610
   90 RHO(I)=RHOV
                                                                               C0620
      60 TO 170
                                                                               C0630
  100 TUL(I)=AMAX1(TUL(I),TX2(I))
                                                                               C0640
      TF(TUL(I)-TCHAR) 110,110,115
                                                                               C0650
  110 RHO(I)=RHOV+(RHOV-RHOC)*((TUL(I)-TABL)/(TABL-TCHAR))
                                                                               C0660
      YK(I)=CHARK+(ABLK-CHARK)*((RHO(I)-RHOC)/(RHOV-RHOC))
                                                                               C0670
      CP(I)=CHARC+(ABLC-CHARC)*((RHO(I)=RHOC)/(RHOV=RHOC))
                                                                               COSSO
      GO TO 170
                                                                               C0690
  115 TF(VPT) 116,116,117
                                                                               C0700
  116 TTUL(T)=TUL(T)
                                                                               C0710
      GO TO 120
                                                                               C0720
  117 TTUL(T)=[X2(I)
                                                                               C0730
  120 TF(I3-1) 25,25,121
                                                                               C0740
  121 TF (13-NKC) 122,122,25
                                                                               C0750
  122 TF(TTUL(1)-TKC(13)) 124,135,123
                                                                               C0760
  123 | 13=13+1
                                                                              100770
      GO TO 121
                                                                               C0780
  124 TF (TTHL(1)-TKC(13-1)) 125,135,130
                                                                               C079n
  125 | 3=13-1
                                                                               CORON
      60 TO 120
                                                                               C0810
  130 YK(I)=XKC(I3-1)+((XKC(I3)-XKC(I3-1))/(TKC(I3)-TKC(I3-1)))
                                                                               てりおうり
     1*(TTUL(I)-TKC(I3-1))
                                                                               C0830
      60 TO 140
                                                                               COBLO
  135 YK(I) = XKC(I3)
                                                                               CORSO
  140 TF(14-1) 25,25,141
                                                                               C0860
  141 TF(14-NCPC) 142,142,25
                                                                               C0870
  142 TF(TTHL(1)-TCPC(14)) 150,165,145
                                                                               CHRRH
  145 T4=14+1
                                                                               C0890
      GO TO 141
                                                                               C0901
  150 TF(TTUL(I)-TCPC(I4-1)) 155,165,160
                                                                               C0910
  155 T4=I4-1
                                                                               C0920
      GO TO 140
                                                                               COSTO
  160 CP(I)=CPC(I4-1)+((CPC(I4)-CPC(I4-1))/(TCPC(I4)-TCPC(I4-1)))
                                                                               C0940
     1*(TTUL(I)-TCPC(I4-1))
                                                                               C0950
      60 TO 166
                                                                               C0960
  165 cP(I)=CPC(I4)
                                                                               C0970.
  166 RHO(I)=RHOC
                                                                               00980
  170 CONTINUE
                                                                               C099n
С
                                                                               C1000
C
      DETERMINATION OF PROPER BACK-UP SHIELD MATERIAL PROPERTY
                                                                               C1010
С
                                                                               C1020
      DO 300 I=1.NMR
                                                                               C1030
      DXB(I) = XBM(I) / ((XNPM(I) - 1.0) * 12.0)
                                                                               C1040
      I KP=NKPR(T)
                                                                               C1050
      (CP=NCPR(I)
                                                                               C1060
      NN=NPM(I)
                                                                               C1070
      no 280 J=1.NN
                                                                               C1080
  200 tF(I5-1) 203,203,201
                                                                               C1090
  201 TF(I5-LKP) 202,202,203
                                                                               C1100
  202 TF(TX2T(J,I)=TXK(I5,T)) 206,220,205
                                                                               C1110
  203 WPITE(6,204) T,TX2T(J,I)
                                                                               C1120
  204 FORMAT(1H0:32H THE RANGE OF ONE OF THE NUMBER :12:71H BACKUP STRUC
                                                                               C1130
```

```
ITURE PROPERTY CURVE FITS WAS EXCEEDED AT A TEMPERATURE OF +1PF12.5
                                                                            C1140
                                                                            C115n
    FRR2=1.0
                                                                            C1160
    GO TO 355
                                                                            C1170
205 t5=15+1
                                                                            C1180
                                                                            C1190
    GO TO 201
206 TF(TX2T(J,I)-TXK(T5-1,I)) 210,220,215
                                                                            C1200
210 15=15-1
                                                                            C1210
    60 TO 200
                                                                            C1220
215 XKH(J,I)=XK(I5-1,I)+((XK(T5,I)-XK(I5-1,I))/(TXK(T5,I)-TXK(I5-1,I))
                                                                            C1230
   1)*(TX2T(J,I)-TXK(I5-1.I))
                                                                            C1240
    GO TO 230
                                                                            C1250
220 XKB(J,I)=XK(I5,I)
                                                                            C1260
230 tF(16-1) 203,203,231
                                                                            C1270
231 TF(16-LCP) 232,232,203
                                                                            C1280
232 TF(TX2T(J,I)-TCP(T6,T)) 234,245,23
                                                                            C1290
                                                                            C1300
233 16=16+1
    GO TO 231
                                                                            C1310
234 (F(TX2T(J,I)-TCP(I6-1,I)) 235,245,240
                                                                            C1320
235 16=16-1
                                                                            C1330
    GO TO 23U
                                                                            C1340
240 CPB(J,I)=CPX(T6-1,I)+((CPX(I6,I)=CPX(T6-1,I))/(TCP(I6,I)=TCP(T6-1,
                                                                            C1350
   11)))*(TX2T(J,1)-TCP(16-1,1))
                                                                            C1360
    GO TO 280
                                                                            C1370
245 CPB(J.I)=CPX(16.I)
                                                                            C1380
280 CONTINUE
                                                                            C1390
    15=2
                                                                            C1400
    16=2
                                                                            C1410
300 CONTINUE
                                                                            C142n
310 TF(DMP) 355,355,320
                                                                            C1430
320 WRITE(6,330)
                                                                            C1440
330 FORMAT(/1X+32H PROPERTIES OF ABLATION MATERIAL/)
                                                                            C1450
                                                                            C1460
    wRITE(6,335)
335 FORMAT(/5X,5HYK(I),9X,5HCP(I),9X,6HRHO(I)/)
                                                                            C1470
    wRITE(6,340) (YK(I),CP(I),RHO(I),I=1,NP)
                                                                            C1480
340 FORMAT(2X,1PF12.5,2X,1PF12.5,2X,1PE12.5)
                                                                            C1490
    WRITE (6,345)
                                                                            C1500
345 FORMAT(//1X:32H PROPERTIES OF BACK-UP STRUCTURE/)
                                                                            C1510
    WRITE(6,347)
                                                                            C1520
347 FORMAT(/5X,8HYKB(J,I),7X,AHCPB(J,I),7X,8HRHOBX(I),7X,7HFMFB(I),8X,
                                                                            C1530
   17HEMBR(I),9X,6HDXR(I)/)
                                                                            C1540
                                                                            C1550
    no 350 I=1.NMP
    KL=NPM(I)
                                                                            C1560
    00 349 J=1.KL
                                                                            C1570
    write(6,348) XKR(J,I),CPR(J,I),RHOBX(I),FMFB(I),FMBB(I),DXB(I)
                                                                            C1580
348 FORMAT(3x,1PF12.5,3X,1PE12.5,3X,1PE12.5,3X,1PF12.5,3X,1PF12.5,3X,1PF12.5,3X,1
                                                                            C1590
                                                                            C1600
   1PF12.5)
349 CONTINUE
                                                                            C1610
350 CONTINUE
                                                                            C1620
355 RETURN
                                                                            C1630
    FND
                                                                            C1640
```

```
SIBFTC ABL
                                                                               noogn
      THIS SUBROUTINE DETERMINES THE MASS FLOW RATE FROM THE
                                                                               P0010
C
        ABLATING NODES
                                                                               D0020
      SUBROUTINE ABLATE
                                                                               00030
C
                                                                               70040
      DIMENSION TITLE(12), HFADNG(12), XTDNT(12, 12), TKC(20), XKC(P0),
                                                                               00050
     1CPC(20),TKV(20),XKV(20),TCPV(20),CPV(20),TIME(300),QCON(300),
                                                                               00060
     20PAD(300), VEL(300), XNPM(12), NKPB(12), NCPB(12), TXK(20,12), XK(20,12)
                                                                               D0070
     3,TCP(20,12),CPX(20,12),RHOBX(12),XBM(12),FMFB(12),EMBR(12),HXX(12)
                                                                               00080
     4,GAPX(12),FTEST(12),BTEST(12),TEMDI(200),TX1(200),TX2(200),
                                                                               00000
     5TX2T(10+12)+THL1(200)+THL2(200)+HX(50)+TW(50)+IR(50)+IR1(50)+
                                                                               D0100
     6TP2(50),TUL(50),IEM(50),TY(200),A(200),B(200),C(200),D(200),
                                                                               D0110
     7R(50),RH0(50),CP(50),DXP(12),XKB(10,12),CPB(10,12),XMDG(50),
                                                                               D0120
     RYK(50), AB(10,12), RB(10,12), CR(10,12), DB(10,12), SR(10,12),
                                                                               00130
     9RP1(10,12),RB2(10,12),H(12),5(50),NPM(12)
                                                                               D0140
      DIMENSION TTUL(50) RHOY1(50), RHOY2(50), DRHO(50), TCPC(20)
                                                                               D0150
C
                                                                               D0160
      COMMON TKC:XKC:TCPC:CPC:TKV:XKV:TCPV:CPV:XNPM:RHORX:XRM:FMBB:
                                                                               P0170
     1FMFB,NKPB,NCPR,TXK,XK,TCP,CPX,NPM,GAPX,FTFST,RTEST,TEMDI,TX1,
                                                                               DO1A0
     2TX2,TX2T,TUL,TUL1,TUL2,TR,IR1,IR2,A,B,C,D,S,R,AB,BB,CP,DB,SB。
                                                                               D0190
     3RP1,RR2,TY,RHOY1,RHOY2,XMDG,RHO,CP,YK,XKR,CPB,DXR,DT,XLOST,
                                                                               00200
     4TABL,TCHAR,TRFC,RHOV,RHOC,FRLOW,FMV,EMC,H300,NKC,NCPC,NKV,NCPV,
                                                                               00210
     5NP,NMR,NPBS,NPF,TEST2,TEMPI,TX0,TENV,HENV,FFNV,QLOSS,TLIM,TINT
                                                                               00220
      COMMON I1, I2, T3, I4, I5, I6, GIN, INT, DX, XMT, TL, VL, BL, DMP, FRR1, ERR2,
                                                                               D0230
     1FRR3, FRR4, HV, VPT, CHARK, CHARC, ABLK, ABLC, XMD6, M
                                                                               00240
C
                                                                               D0250
      xMT=0.0
                                                                               00260
      LINTSINT
                                                                               D0270
      K I =NP
                                                                               00280
      TF (DMP) 8,8,3
                                                                               D0290
    3 WRITE(6.5)
                                                                               00300
    5 FORMAT(//1X:29HMASS FLOW FROM ABLATING NODES//)
                                                                               D0311
    8 DO 200 KKI=LINT,NP
                                                                               00320
      TF(IR1(KI)) 11,11,12
                                                                               D0330
   11 TF(TX1(KI).LE.TABL) GO TO 9
                                                                               D0340
   12 TUL1(KI) = AMAX1(TUL1(KI), TY1(KI))
                                                                               00350
      TP1(KI)=1
                                                                               00360
      GO TO 20
                                                                               00370
    9 TF (TX1 (K1)-TARL) 10,10,20
                                                                               00380
   10 HHOY1 (KI)=RHOV
                                                                               00390
      GO TO 50
                                                                               00400
   20 TF(TUL1(KI)-TCHAR) 40,30,30
                                                                               00410
   30 RHOY1(KI)=RHOC
                                                                               D0420
      GO TO 50
                                                                               00430
   40 RHOY1(KI)=RHOV+(RHOV-RHOC)*((TUL1(KI)-TARL)/(TARL-TCHAR))
                                                                               D0440
   50 TF(IR2(K1)) 52,52,54
                                                                               D0450
   52 IF (TX2(KI).LE.TABL) GO TO 56
                                                                               DOUGO
   54 TUL2(KI)=AMAX1(TUL2(KI),TX2(KJ))
                                                                               00470
      IR2(KT)=1
                                                                               DUTTE
      GO TO 70
                                                                               00490
   56 IF(TX>(KI)-TARL) 60,60,70
                                                                               00500
   60 RHOY2(KI)=RHOV
                                                                               00510
      60 TO 95
                                                                               00520
   70 1F(TUL2(KI)-TCHAR) 90,80,80
                                                                               D0530
   80 RHOY2(KI)=RHOC
                                                                               00540
      GO TO 95
                                                                               D0550
   90 RHOY2(KI)=RHOV+(RHOV-RHOC)*((TUL2(KI)-TABL)/(TABL-TCHAR))
                                                                               D0560
```

95	nRHO(KI)=((RHOY1(KI)=RHOY2(KI))/nT)*DX	00570
	TF(KI=NP) 97,96,96	D0580
96	DRHO(KI)=DRHo(KI)/2.n	n 0591
	GO TO 98	D0600
97	TF(KI-IN1) 96,96,98	00610
98	IF(DRHO(KI)) 110,120,120	D0620
110	DRHO(KI)=0.0	D0630
120	xMT=XMT+DRHO(KI)	00640
	XMDG(KI)=XMT	D0650
	TF(DMP) 190,190,150	P0660
150	wPITE(6,160) XMDG(KI),DRHO(KI),RHOY2(KI),RHOY1(KI)	D0670
160	FORMAT(1x,5HxMDG=,1PE12.5,2X,5HDRHO=,1PF12.5,2X,6HRHOY2=,1PE12.5,2	D0680
	1x,6HRHOY1=,1PF12.5)	D0690
190	K T=K I=1	00700
200	CONTINUE	D0710
	RETURN	00720
	FND	00730

SIBFT	COXID	F0000
C		F0010
С	THIS SUBROUTINE CALCULATES THE HEATING RATE DUE TO COMBUSTION	F0020
С	IT IS ASSUMED THAT OXYGEN AND CARBON REACT TO FORM CO ONLY.	F0030
C		F0040
	SURROUTINE OXIDAT(XMDO,QOXID)	F0050
C		F0060
	00XID=XMU0*4600.0/3600.0	F0070
	00XID=0.0	F0080
	RETURN	F0090
	FND	F010n

```
SIBETC SWUFT
C THIS SUBHOUTINE DETERMINES THE FORWARD TIME STEP TEMPERATURES
                                                                              F0000
                                                                              F0010
      BY SOLVING THE TRI-DIAGONAL MATRIX
                                                                              F0020
      SUBROUTINE SWUFT (A,R,C,D,T,N,DMP)
                                                                              F0030
      DIMENSION A(200).B(200).C(200).D(200).T(200).CP(200).DP(200)
                                                                              FDOUN
      CP(1)=C(1)/B(1)
                                                                              F0050
      DP(1)=D(1)/P(1)
                                                                              F0060
      no 100 T=2+N
                                                                              F0070
      CP(I)=C(1)/(B(I)-A(I)*CP(I-1))
                                                                              F0080
      P(I)=(P(I)-A(I)+P(I-1))/(R(I)-A(I)+CP(I-1))
                                                                              F0090
  100 CONTINUE
                                                                              F0100
      T(N)=DP(N)
                                                                              F0110
      NM1=N-1
                                                                              F012n
      DO 200 J=1+NM1
                                                                              F0130
      T=N-J
                                                                              F0140
      T(I)=DP(I)-CP(I)*T(I+1)
                                                                              F0150
  200 CONTINUE
                                                                              F0160
      TE (DMP) 300,300,250
                                                                              F0170
  250 WRITE(6,260)
                                                                              F0180
  260 FORMAT(//1X:43HCOFFFICIENTS CALCULATED BY SUBROUTINE SWUFT//)
                                                                              F0190
      WRITE (6,270)
                                                                              E0200
  270 FORMAT(6X,5HCP(I),10x,5HDP(I),10x,4HT(I)/)
                                                                              F0210
      write(6,275) (CP(I),nP(I),T(I),I=1,N)
                                                                              E0220
  275 FORMAT(2X,1PE12.5,2X,1PF12.5,2X,1PE12.5)
                                                                              F0230
  300 RETURN
                                                                              F0240
      FND
                                                                              F0250
```

C

С

С

C

```
SIBFTC PEC
                                                                              60000
                                                                              60010
      THIS SUBROUTINE DETERMINES THE FRONT FACE LOCATION AND CHAR MASS
                                                                              60020
      REMOVAL RATE
                                                                              G0030
                                                                              60040
      SUBROUTINE RECESS(XMOC:XLOST:TREC:DT:RHOC:TS:SR:TX2:NREC:NRS:FRRS:
                                                                              60050
     15X0,SDOT,DMP)
                                                                              60060
                                                                              60070
      DIMENSION TS(50), SR(50)
                                                                              08008
      TE.(TX2-TRFC) 10,20,20
                                                                              60090
   10 XMDC=0.0
                                                                              60100
      XLOST=0.0
                                                                              G0110
      SDOT=0.0
                                                                              60120
      60 TO 60
                                                                              60130
   20 TF (NRS-1)25,25,21
                                                                              60140
   21 TF (NRS-NRFC) 22,22,25
                                                                              G0150
   22 1F(TX2-TS(NRS)) 32,40,30
                                                                              60160
   25 WPITE(6,26) TY2
                                                                              60170
   26 FORMAT(1H0,75H THE RANGE OF THE SURFACE RECESSION TABLE WAS EXCEPT
                                                                              60180
     1FD AT A TEMPERATURE OF ,1PE12.5)
                                                                              60190
                                                                              60200
      FPR5=1.0
      60 TO 60
                                                                              60210
   30 NRS=NRS+1
                                                                              60220
                                                                              60230
      GO TO 21
   32 TF(TX2-TS(NRS-1)) 34,40,36
                                                                              60240
   34 NPS=NRS-1
                                                                              60250
      60 TO 20
                                                                              60260
   36 SX=SR(NRS-1)+((SR(NRS)-SR(NRS-1))/(TS(NRS)-TS(NRS-1)))
                                                                              60270
     1*(TX2-TS(NRS-1))
                                                                              60280
      GO TO 50
                                                                              60290
   40 SX=SR(NRS)
                                                                              60300
   50 xt OST=300.0*5X*DT
                                                                              60310
      XMDC=(XLOST*RHOC)/DT
                                                                              60320
      SDOT=5X+300.0
                                                                              60330
      TF(DMP) 60,60,52
                                                                              60340
   52 WRITE (6,54) SX, XLOST, XMDC
                                                                              60350
   54 FORMAT(1H0,3H5X=,1PE12.5.3X,6HXLOST=,1PE12.5,3X,5HXMDC=,1PE12.5)
                                                                              60360
   AO RETURN
                                                                              G0370
      FND
                                                                              60380
```

٠.

```
SIBFTC TEMP
                                                                                HOODO
      THIS SUBROUTINE DETERMINES THE INITIAL TEMPERATURE DISTRIBUTION
                                                                                HARTA
C
      IN THE HEAT SHIFLD STRUCTURE
                                                                                H0020
      SUBROUTINE TEMPD
                                                                                H0030
C
                                                                                H0040
      DIMENSION TITLE(12).HEADNG(12).XIDNT(12,12).TKC(20).XKC(20).
                                                                                H0050
     1CPC(20), IKV(20), XKV(20), TCPV(20), CPV(20), TIME(300), QCON(300),
                                                                                H0060
     20PAD(300), VEL(300), XNPM(12), NKPB(12), NCPB(12), TXK(20,12), XK(20,12)
                                                                                H0070
     3.TCP(20,12),CPX(20,12),RHOBX(12),XBM(12),FMFB(12),EMBP(12),HXX(12)
                                                                                HOORD
     4.GAPX(12),FTEST(12),RTEST(12),TFMDI(200),TX1(200),TX2(200),
                                                                                H0090
     5TX2T(10+12)+THL1(200)+TH 2(200)+HX(50)+TW(50)+IR(50)+TR1(50)+
                                                                                H0100
     61P2(5n),TUL(5n),IFM(5n),TY(20n),A(200),B(200),C(200),D(20n),
                                                                                H0110
     7R(50),RHO(50),CP(50),DXP(12),XKP(10,12),CPB(10,12),XMDG(50),
                                                                                H0120
     8YK(50).AH(10.12).BB(10.12).CB(10.12).DB(10.12).SR(10.12).
                                                                                H0130
     9RP1(10,12), RR2(10,12), H(12), S(50), NPM(12)
                                                                                H0140
      DIMENSION TTUL(50), RHOY1(50), PHOY2(50), DRHO(50), TCPC(20)
                                                                                H0150
C
                                                                                H0160
      COMMON TKC, XKC, TCPC, CPC, TKV, XKV, TCPV, CPV, XNPM, RHORX, XRM, EMBB,
                                                                                H0170
     1FMFB.NKPH.NCPB.TXK.XK.TCP.CPX.NPM.GAPX.FTEST.RTEST.TEMDI.TX1.
                                                                                H0180
     ?TX2,TX2T,TUL,TUL1,TUL2,IR,IR1,IR2,A,B,C,D,S,R,AP,BB,CR,DB,SB,
                                                                                H0190
     3RR1, RR2, TY, RHOY1, RHOY2, XMDG, RHO, CP, YK, XKR, CPB, DXR, DT, YLOST,
                                                                                H0200
     4TARL.TCHAR.TRFC.RHOV.RHOC.FBLOW.FMV.EMC.H300.NKC.NCPC.NKV.NCPV.
                                                                                H0210
     5NP, NMR, NPRS, NPF, TFST2, TEMPI, TX0, TENV, HENV, FFNV, QLOSS, TLIM, TINT
                                                                                HD220
      COMMON 11,12,13,14,15,16,0IN, INT.DX.XMT.TL.VL.BL.DMP.FRP1,ERR2.
                                                                                H0230
     1FRR3, FRR4, HV, VPT, CHARK, CHARC, ABLK, ABLC, XMDC, H
                                                                                H0240
C
                                                                                H0250
      x = 0.0
                                                                                H0260
      TF(TEST2) 300,100,200
                                                                                H0270
  100 00 150 L=1.NPF
                                                                                H0580
      TX1(L)=TEMPI
                                                                                H0590
      TXP(L)=TEMPI
                                                                                H0300
      TUL1(L)=TX1(L)
                                                                                H0310
      TUL2(L)=1X2(L)
                                                                                H0320
      TEMDI(L)=TEMPI
                                                                                H0330
  150 CONTINUE
                                                                                H0340
      00 160 I=1,NMP
                                                                                H0350
      IN=NPM(I)
                                                                                H0360
                                                                                H0370
      100 155 M=1.JN
      TX2T(M,I)=TEMPI
                                                                                H0380
  155 CONTINUE
                                                                                H0390
                                                                                HOUDO
  160 CONTINUE
      GO TO 324
                                                                                H0410
  200 no 220 L=1.NP
                                                                                H0420
      TEMDI(L)=TX0+((TENV-TX0)/TL)**X
                                                                                H0430
      TX1(L)=TEMDI(I)
                                                                                HOULD
      TX2(L)=TX1(L)
                                                                                H0450
      TUL1(L)=1X1(L)
                                                                                HOUSE
                                                                                H0470
      TUL2(L)=TX1(L)
                                                                                H0480
      X=X+DX
                                                                                HURAU
  220 CONTINUE
                                                                                H0500
      L=NP+1
                                                                                H0510
      DO 270 I=1.NMR
      KJ=NPM(I)
                                                                                H0520
                                                                                H0530
      00 250 J=1.KJ
      TFMDI(L)=TX0+((TENV-TX0)/TL)**X
                                                                                H0541
      TX1(L)=TEMDI(L)
                                                                                H0550
      TX2(L)=TEMDI(L)
                                                                                H0560
```

		TX2T(J:1)=TEMNI(L)	H0570
		x=x+DxB(1)	H0580
		L=L+1	H0590
	250	CONTINUE	H0600
		X=X+(GAPX(I)/12.0)	H0611
	270	CONTINUE	H0620
		60 TO 320	H0630
C		AN ARRRITARY TEMPERATURE DISTPIRUTION CAN BE READ IN FROM INPUT	H0641
C		DATA IF TEST? IS A NEGATIVE NUMBER	H0650
	300	wPITE(6,310)	H0660
	310	FORMAT(1HO:79H THE VALUE OF TESTS WAS NEGATIVE: SUBROUTINE TEMPD S	H0670
		1HOULD NOT HAVE BEEN CALLED.)	H0680
		FRR1=1.0	H0690
	320	RETURN	H0700
		FND	H0710

```
SIBFTC DON2
C THIS
                                                                                10000
      THIS SUBROUTINE DETERMINES THE TEMPERATURE OF POINTS & FIXED
                                                                                TOOIN
C
      DISTANCE FROM A REFERENCE PLANE FROM THE TEMPERATURES CALCULATED
                                                                                10020
C
      IN A VARYING THICKNESS
                                                                                10030
C
                                                                                10040
      SUBROUTINE DON2 (XLOST, XARRAY, TARRAY, NA, XNODE, TEMP, XNODEV, KK, XLSTV,
                                                                                10050
     Inx)
                                                                                10060
C
                                                                                10070
      DIMENSION XARRAY(50), TARRAY(50), XNODE(50), TEMP(50), XNODEV(50)
                                                                                10080
C
                                                                                10090
      K=0
                                                                                70100
      DYT=0.0
                                                                                70110
      DO 100 I=1.NA
                                                                                10120
      TF(XLSTV.LE.DXT) GO TO 150
                                                                                T0130
      K=K+1
                                                                                10140
  100 DXT=DXT+DX
                                                                                10150
  150 KK=NA-K
                                                                                10160
      XK=K
                                                                                10170
      XNODEV(1)=XLSTV
                                                                                10180
      TFMP(1)=TARRAY(1)
                                                                                10190
      DO 200 I=1.KK
                                                                                10200
      YNODE(I)=XK*DY-XLSTV
                                                                                10210
      CALL DISCT3(XNODE(I), XARRAY, TARRAY, NA, TEMP(I+1) )
                                                                                10220
      XNODEV(I+1)=XK*DX
                                                                                10230
 200 XK=XK+1.0
                                                                                10240
      RFTURN
                                                                                10250
      FND
                                                                                10260
```

\$IBFT(UINTRP	კიიიი კიი1ი
	SUBROUTINE UINTRP (X, XTBL, Y, YTPL, N, J)	
	DIMENSION XTBL (50) *YTBL (50)	Jousu
	I=J	J0030
	IF(I.GT.N.OR.T.LT.2) 1=2	J0040
10	TF(XTRL(I-1), LE. X. AND, X. LF. XTRL(I)) GO TO 40	J0050
	TF(X.GT.XTBL(T)) GO TO 30	-J006n
20	T=I=1	J0070
	TF(I.GE.2) GO TO 10	Johan
	1=2	0000 0
	GO TO 40	JOINA
30	T=I+1	J0110
.,.	TF(I.LE.N) GO TO 10	J012n
	TEN	J0130
40	FRACT=(X-XTBL(I-1))/(XTBL(I)-XTBL(I-1))	J0140
_	Y=YTBL(I=1)+(YTRL(I)-YTBL(I=1))*FRACT	J0150
	RETURN	J0160
	FND	J0170

```
KODOO
SIBFTC ISOT
      SUBROUTINE ISOTHM (DEPTH, TEMP, ROND, N, ANS)
                                                                              K0010
                                                                              K0020
      DIMENSION DEPTH(1). TEMP(1)
                                                                              K0030
      ANS=-1.
                                                                              K0040
      K=N-1
      no 100 T=1.K
                                                                              K0050
      TF (TEMP(1)=BOND)2,1,3
                                                                              KONAN
                                                                              K0070
    1 ANS=DFPTH(I)
                                                                              KOOAN
      GO TO 100
                                                                              K0090
    2 JF(TEMP(I+1)-ROND)10n,10n,4
    4 ANS=DEPTH(I+1)=(TEMP(I+1)=BOND)*(DEPTH(I+1)=DEPTH(I))/(TEMP(I+1)=
                                                                              KOINN
                                                                              KO110
     1TFMP(T))
                                                                              K0120
      GO TO 100
    3 TF(TEMP(I+1)-POND)5,100,100
                                                                              K0130
    5 ANS=(TEMP(I)=ROND)*(DEPTH(I+1)=DEPTH(I))/(TEMP(I)=TEMP(I+1))+DEPTH
                                                                              K0140
                                                                              K0150
     1(1)
  100 CONTINUE
                                                                              K0160
      TF (BOND.EQ.TEMP(N)) ANSEDEPTH(N)
                                                                              K0170
                                                                              K0180
      RFTURN
                                                                              K0190
      FND
```

```
SIBFTC SAVE
                                                                               1.0000
      SUBROUTINF SAVE (SAVE1, SAVE2, SAVE3, USE, NX1, VALUE, DT, TETNAL, TIME,
                                                                               1.0010
                                                                               1.0020
     1 THING \
      DIMENSION SAVE1(1), SAVE2(1), SAVE3(1)
                                                                               1.0030
                                                                               1 0040
      USE=0.0
      SAVEI (NX1)=VALUE
                                                                               1,0050
                                                                               L0060
      NX2=NX1-1
      TF(NX2.FQ.0)NX2=3
                                                                               L0070
      SAVE2(NX2)=VALUE
                                                                               1.0080
      NX3=NX2-1
                                                                               10090
                                                                               10100
      TF (NX3.EQ.0)NX3=3
      SAVE3(NX3)=VALUE
                                                                               10110
      TF((TTME.LT.(2.*DT)).OR.(TIME.GF.(TFINAL=3.*DT)))GO TO 4
                                                                               10120
      GO TO (1,2,3),NX1
                                                                               1.0130
                                                                               1.0140
    1 TF(((ABS(SAVF2(1)-SAVF2(2))).LE.,001).OR.(ABS(SAVE2(2)-SAVE2(3))
     1.1E..n01))GO TO 5
                                                                               1.0150
      TF(((SAVE2(1).LT.SAVF2(2)).AND.(SAVF2(2).GT.SAVF2(3))).OR.((SAVF2(
                                                                               10160
     11). T.SAVF2(2)).AND.(SAVF2(2).LT.SAVE2(3))))USE=SAVE2(2)
                                                                               10170
    5 THING=SAVF2(2)
                                                                               LOIAN
                                                                               10190
      GO TO 4
    2 IF(((ABS(SAVF3(1)-SAVF3(2))).LE..D01).OR.(ARS(SAVE3(2)-SAVE3(3))
                                                                               F0500
                                                                               L0210
     1.1E..001))60 TO 6
      TF(((SAVE3(1).LT.SAVE3(2)).AND.(SAVE3(2).GT.SAVE3(3))).OR.((SAVE3(
                                                                               1.0220
     11).GT.SAVF3(2)).AND.(SAVF3(2).LT.SAVE3(3))))USE=SAVF3(2)
                                                                               1.0230
    6 THING=SAVF3(2)
                                                                               L0240
      GO TO 4
                                                                               1,0250
    3 TF(((ABS(SAVE1(1)=SAVE1(2))).LE.,001).OR.(ABS(SAVE1(2)=SAVE1(3))
                                                                               F0560
     1.1E..n01))GO TO 6
                                                                               L0270
      TF(((SAVE1(1),LT.SAVF1(2)),AND,(SAVE1(2),GT.SAVE1(3))).OR,((SAVE1(
                                                                               L0280
     11).GT.SAVF1(2)).AND.(SAVF1(2).LT.SAVE1(3))))USE=SAVE1(2)
                                                                               1.0290
    7 THING=SAVF1(2)
                                                                               1.0300
    4 N:X1=NX1+1
                                                                               £0310
      TF (NX1.EQ.4)NY1=1
                                                                               10320
      RFTURN
                                                                               L0330
                                                                               L0340
      FND
```

SIBFTC DISCT3	MOOON
CUBROUTINE DISCT3(XA.TABX.TARY.NY.ANS)	M0010
DIMENSION TABX(1), TARY(1)	M0020
CALL DISSER(XA,TABX,1,NY,2,NN)	M0030
NNN=3	MON4N
CALL LAGRAN (XA, TARX (NN), TABY (NN), NNN, ANS)	M0050
RFTURN	M0060
END	M0070

.

```
SIBFTC MORE
                                                                               NOODO
      DIMENSION TITLE(12),x(2000),Y1(2000),Y2(2000),Y3(2000),Y4(2000)
                                                                               N0010
                                                                               N0020
      REWIND 11
      RFAD(11) (TITLE(I), I=1,12)
                                                                               N0030
      RFAD(11)X(1),Y1(1),Y2(1),Y3(1),Y4(1)
                                                                               N0040
      Y3(1)=Y3(1)*12.+Y1(1)
                                                                               N0050
      Y4(1)=Y4(1)*12.+Y1(1)
                                                                               NOOGO
                                                                               N0070
      1=2
   30 RFAD(11)X(I),Y1(I),Y2(I),Y3(I),Y4(I)
                                                                               NOORO
      TF(X(T)-5001.)10,20,20
                                                                               NOOGO
   10 Y3(I)=Y3(I)*12.+Y1(I)
                                                                               NOTO
                                                                               N0110
      Y4(I)=Y4(I)*12.+Y1(I)
      T=I+1
                                                                               N0120
      GO TO 30
                                                                               N0130
   20 NPLOT=I-1
                                                                               N0140
                                                                               N0150
      YM1=Y1(1)
      YM2=Y2(1)
                                                                               N0160
      YM3=Y3(1)
                                                                               N0170
      YM4=Y4(1)
                                                                               N0180
      no 40 K = 2 . NPLOT
                                                                               N0190
      TF (Y1(K),GT,YM1) YM1 = Y1(K)
                                                                               NOSON
      TF (Y2(K).GT.YM2) YM2 = Y2(K)
                                                                               N0210
      TF (Y3(K).GT.YM3) YM3 = Y3(K)
                                                                               N0220
      TF (Y4(K).GT.YM4) YM4 = Y4(K)
                                                                               N0230
   40 CONTINUE
                                                                               N0240
 1000 FORMAT(1H1 (12A6))
                                                                               N0250
      CALL ACCEND(X,Y1,Y2,Y3,Y4,NPLOT)
                                                                               N0260
      XMAX=X (NPLOT)
                                                                               N0270
       CALL APLOT (X,Y1,XMAX,YM1,TITLE,NPLOT)
                                                                               NOPAN
      CALL RPLOT (X,Y2,XMAX,YM2,TITLE)
                                                                               N0290
      CALL CPLOT (X, Y3, Y4, XMAX, YM3, YM4, TITLF, Y1)
                                                                               M0300
      wRITE(6,1000)(TITLE(1),I=1,12)
                                                                               N0310
      write(6,1001)(X(I),Y1(I),Y2(I),Y3(I),Y4(I),I=1,NPLOT)
                                                                               N0320
 1001 FORMAT(5E20.8)
                                                                               N0330
      WRITE (6,1002) XMAX, YM1, YM2, YM3, YM4, NPLOT
                                                                               N0340
 1002 FORMAT(///6H YMAX=F10.4,5H YM1=F10.4,5H YM2=F10.4,5H YM3=F10.4,5H
                                                                               N0350
     1YM4=F10.4,2X6HNPLOT=[4]
                                                                               N0360
      RFAD (11) (TITLE (I).T = 1.12)
                                                                               N0370
      RFAD(11)X(1),Y1(1),Y2(1),Y3(1),Y4(1)
                                                                               NOSAO
                                                                               N0390
      1=2
      TF(X(1)=5001,)30,50,50
                                                                               N0400
   50 WRITE(6,1003)(TITLE(1),1=1,12)
                                                                               N041n
 1003 FORMAT(////1246)
                                                                               N0420
      RETURN
                                                                               N0430
      FND
                                                                               N0440
```

SIBFTC ACCEN	POGGO
SUBROUTINE ACCEND(X+Y+A+R+C+N)	P0010
DIMENSION $X(1),Y(1),A(1),R(1),C(1)$	P0020
K=1	P0030
101 SMALL=X(K)	P0040
00 100 I=K.N	P005n
D()MY=X(I)	P0060
SMALL=AMIN1(SMALL,DUMY)	P0070
TF(SMALL.FQ.X(I))INDFX=I	PODAN
100 CONTINUE	P0090
x(INDEX)=x(K)	P0100
X(K)=SMALL	P011n
SAVE=Y(K)	P0120
Y(K)=Y(INDEX)	P0130
Y(INDFX)=SAVE	P0140
SAVEA=A(K)	P0150
A(K)=A(INDEX)	P0160
A(INDFX)=SAVFA	P0170
SAVEB=B(K)	POIAN
B(K)=B(INDEX)	P0190
H(INDFX)=SAVER	P0200
SAVECEC(K)	P0210
C(K)=C(INDEX)	P0221
C(INDFX)=SAVEC	
	P0230
KIK+1	P0240
TF(K.FQ.N)RETHRN	P0250
60 TO 101	P0260
FND	P0270

```
SIBFIC APLOT
                                                                                იიიიი
      SUBROUTINF APLOT (X, Y, XLTM, YLTM, TITLE, IPLOT)
                                                                                00010
      DIMENSION X(300), YTITLE(10), XTITLE(10)
                                                                                00020
      DIMENSION TITLE(12), Y(300), ALONGY(7)
                                                                                90030
      COMMON /APC / ALLOW(7), A! ONGX(7), NPLOT, ZFRO, XMAX. IFIX
                                                                                00040
      DATA (XTITLE(T), I=1,10)/38H
                                                             TIME (SEC.)
                                                                                00050
      DATA (YTITLE(T), 1=1,10)/38H
                                        SURFACE RECESSION (IN.)
                                                                                00060
      2FR0=0.0
                                                                                00070
      ALLOW(1)=50.
                                                                                00080
      ALLOW(2)=100.
                                                                                00090
      ALLOW(3)=250.
                                                                                00100
      ALLOW(4)=500.
                                                                                60110
      ALLOW(5)=1000.
                                                                                00120
      ALLOW(6)=2500.
                                                                                00130
      ALLOW(7)=5000.
                                                                                00140
      NPLOT=IPLOT
                                                                                00150
      no 10 I=1.7
                                                                                00160
                                                                                00170
      11=1
      IF(XLIM- ALLOW(I)) 20,20,10
                                                                                00180
   10 CONTINUE
                                                                                00190
   30 WRITE (6,1000) XLIM, YLIM
                                                                                00200
 1000 FORMAT(///77H APLOT CANNOT BE DONE BECAUSE FITHER XLIM EXCEEDED 50
                                                                               - 00210
     inn. OR YLIM EXCEEDED 5. /6H XLIM=F12.5.5X.6H YLIM=E12.5 // 19H WF
                                                                                00220
     2NOW GO TO BPLOT /// )
                                                                                00230
      RETURN
                                                                                00240
   20 XMAX= ALLOW(IT)
                                                                                00250
      TFIX=TI
                                                                                00260
      DO 40 I=1.4
                                                                                90270
                                                                                00280
      11=1
      TF(YLTM *100. -ALLOW(T) )50,50,40
                                                                                00290
   40 CONTINUE
                                                                                00300
      60 TO 30
                                                                                00310
   50 YMAX =ALLOW(TT) /100.
                                                                                00320
      CALL RSTERM
                                                                                00330
      CALL GRIDGN (123,1023,24,924,18,18,5,5)
                                                                                00340
      CALL PLOT1 (1,1,2FRO, XMAX, ZERO, YMAX, X, Y, NPLOT, 1,1H/)
                                                                                90350
      AL ONGX (1)=0.0
                                                                                90360
      AL ONGY (1)=0.0
                                                                                00370
      no 60 I=1.6
                                                                                00380
      CALL LABELX (ALONGX(T).1)
                                                                                00390
      CALL LABELY (ALONGY(I).1)
                                                                                00400
      ALONGY(I+1)= ALONGX(T) +.2* XMAX
                                                                                00410
   60 ALONGY(I+1) = ALONGY(I) +.2* YMAX
                                                                                00420
      CALL PRINT(200,975,12,0,38,XTTTLE)
                                                                                90430
      CALL PRINT(47,200,0,12,38,YTITLF)
                                                                                00440
      CALL PRINT(123,1000,12,0,72,TTTLF) -
                                                                                00450
      CALL DMPBIIF
                                                                                00460
      RFTURN
                                                                                00470
                                                                                90480
      END
```

```
ROODO
SIBFTC PPLOT
      SUBROUTINE PPLOT (X, Y, XLIM, YLIM, TITLE)
                                                                              P0010
                                                                              R0020
      DIMENSION X(300), Y(300), YTITLF(10), ALONGY(7), XTITLE(10)
      DIMENSION TITLE(12)
                                                                              R0030
                                                                              R0040
      COMMON /ARC / ALLOW(7), ALONGX(7), NPLOT, ZFRO, XMAX, IFIX
                                                           TIME (SEC.)
      DATA (XTITLE(T), I=1,10)/3AH
                                                                              R0051
      DATA (YTITLE(T), I=1,10)/3AH
                                             BONDLINE TEMPERATURE (R)
                                                                              P0060
      ALONGY(1)=0.0
                                                                              R0070
                                                                              ROOAN
      no 10 I=1.7
                                                                              R0090
      7 ] = I
      IF(YLTM -ALLOW(I)) 20,20,10
                                                                              R0100
   10 CONTINUE
                                                                              R0110
      WRITE (6,100n) YLIM
                                                                              R0120
 1000 FORMAT(/// 37H PPLOT WILL NOT BE DONE BECAUSE YLTM= E12.5 ////)
                                                                              P0130
      RFTURN
                                                                              R0140
   20 YMAX =ALLOW(IT)
                                                                              R0150
      CALL RSTFRM
                                                                              P0160
      CALL GRIDGN(123,1023,24,924,18,18,5,5)
                                                                              P0170
      CALL PLOT1 (1,1,ZERO,XMAX,ZERO,YMAX,X,Y, NPLOT,1, 1H/)
                                                                              R0180
      no 30 I=1.6
                                                                              R0190
      CALL LABELX (ALONGX(T),1)
                                                                              R0201
      CALL LABELY (ALONGY(T),1)
                                                                              R0210
   30 ALONGY(I+1) = ALONGY(I) + .2* YMAX
                                                                              R0220
      CALL PRINT(200:975:12:0:38:XTITLF)
                                                                              R0230
      CALL PRINT(47,200,0,12,38,YTITLE)
                                                                              R0240
      CALL PRINT(123,1000,12,0,72,TITLF)
                                                                              R0250
      CALL DMPHUF
                                                                              P0260
      RETURN
                                                                              P0270
      FND
                                                                              R0280
```

```
SIBFTC CPLOT
                                                                               50000
      SUBROUTINE CPI OT (X, Y1, Y2, XLIM, YLIM1, YLIM2, TITLE, Y)
                                                                               50010
      DIMENSION X(300), Y1(300), Y2(300), YTITLE(10), YY(2000), XTITLE(10)
                                                                               50020
      MIMENSION TITLE(12), Y(300), ALONGY(7)
                                                                               50030
      DIMENSION CURVE(1), VRUG(4), HRUG(7)
                                                                               50040
      COMMON /ARC / ALLOW(7).ALONGX(7).NPLOT.ZFRO.XMAX.IFIX
                                                                               50050
      DATA (VBUG(I), I=1,4) / 100.0,50.0,20.0,10.0 /
                                                                               50060
      DATA (HRUG(I), I=1,7) / 1.0,2.0,5.0,10.0,20.0,50.0,100.0 /
                                                                               50070
      DATA (XTITLE(T), I=1,10)/38H
                                                            TIME (SEC.)
                                                                               50080
      DATA (YTITLE(T), I=1,10)/38H
                                        DISTANCE (IN.)
                                                                               50090
      DATA ONE/4H1060 / TWO/4H1460 /
                                                                               50100
      DATA WON/1H1 /, TOO/1H2
                                                                               50110
 *** FOUR (4) CHARACTERS ARE ALLOWED FOR CHRVF(1)
                                                                               50120
      CURVE(1)=ONE
                                                                               50130
      HFACTR=HBUG(IFIX)
                                                                               50140
      SYMBOL=WON
                                                                               50150
      YPIG =AMAX1 (YLIM1, YLIM2 )
                                                                               50160
      NCURVE =1
                                                                               50170
                                                                               50180
      no 1 I=1,NPLOT
    1 YY(I) = Y1(I)
                                                                               50190
      DO 7 1=1,4
                                                                               50200
      1 = 1 7
                                                                               50210
      TF(YBTG*100. -ALLOW(T))6.6.7
                                                                               50220
    7 CONTINUE
                                                                               50230
      WRITE (6,1000) YLIM1, YLIM2
                                                                               50240
 1000 FORMAT (/// 39H CPLOT WILL NOT BE DONE BECAUSE YLIM1=F12.5.1nH OR
                                                                               50250
     1YLIM2= E12.5 //// )
                                                                               50260
      RETURN
                                                                               50270
    6 YMAX =ALLOW (TI)/100.
                                                                               50280
      VFACTR=VBUG(IT)
                                                                               50290
      CALL RSTERM
                                                                               50300
      CALL GRIDGN (123,1023,24,924,18,18,5,5)
                                                                               50310
                                                                               50320
      J=1
   70 DO 10 I=J.NPLOT
                                                                               50330
      II = I
                                                                               50340
      IM1 =1-1
                                                                               50350
      IF( YY(I)-Y(I) )20,10,10
                                                                               50360
   10 CONTINUE
                                                                               50370
      NOPT=NPLOT-J+1
                                                                               50380
      LI=J + NOPT/2
                                                                               50390
      TVLOC=(YMAX-YY(LL))*18.*VFACTP +24. -4.
                                                                               50400
      THLOC= X(LL) +18. /HFACTR +123. -48.
                                                                               <041n
      CALL PRINT(IHLOC, IVLOC, A,0,4, CHRVE)
                                                                               50420
      CALL PLOT1(1,1,ZERO,XMAX,ZERO,YMAX,X(J),YY(J),NOPT ,1,SYMBOL)
                                                                               50430
      IF (NCURVF-1 ) 90,85,90
                                                                               50440
   85 DO 86 I=1.NPLOT
                                                                               50450
   86 YY(I)=Y2(I)
                                                                               50460
      CURVE(1)=TWO
                                                                               50470
                                                                               50480
      SYMBOL=TOO
      NCURVF = 2
                                                                               50490
                                                                               50500
      J=1
                                                                               50510
      GO TO 70
                                                                               50520
   20 NPT=IT-J
      LL=J + NPT/2
                                                                               50530
      IVLOC=(YMAX-YY(LL))*18.*VFACTR +24. -4.
                                                                               50540
      THLOC= X(LL) +18. /HFACTR +123. -48.
                                                                               50550
      CALL PRINT(IHIOC, IVLOC, A,0,4, CURVE)
                                                                               50560
```

	CALL PLOT1(1,1,ZERO,XMAX,ZERO,YMAX,X(J),YY(J),NPT,1,SYMPOL) NO 50 IJ= II. NPLOT	50570 50580
	JJ= IJ	50590
	(F(YY(IJ)- Y(TJ))50,40,40	50600
50	CONTINUE	50610
	IF(NCHRVE-1) 90.85.9n	50620
40	,≔ JJ	50630
	60 TO 70	50641
90	ALONGY(1)=0.n	50650
	no 100 I=1.6	50660
	CALL LABELX(ALONGX(I), 1)	50670
	CALL LARELY(ALONGY(I),1)	50680
100	ALONGY(I+1)=ALONGY(I) + .2*YMAX	50690
	CALL PRINT(200,975,12,0,38,XTTTLF)	50700
	CALL PRINT(47,200,0,12,38,YTITLF)	<071n
	CALL PRINT(123,1000,12,0.72,TITLE)	50720
	CALL DMPHUF	50730
	RETURN	50740
	FNO	50750

APPENDIX C

PROGRAM TERMINOLOGY

Fortran	Description
A	"A" coefficient in matrix, single subscript
AB	"A" coefficient in matrix, double subscript
ABLC	specific heat of material at TABL
ABLK	thermal conductivity of material at TABL
В	"B" coefficient in matrix, single subscript
BB	"B" coefficient in matrix, double subscript
\mathtt{BL}	Total thickness of backup structure
BLTEM	value of 1460 isotherm depth from previous time step
BTEST	test to determine mode of heat transfer out of back surface of backup materials
C	"C" coefficient in matrix; single subscript
CB	"C" coefficient in matrix, double subscript
CHARC	specific heat of material at TCHAR
CHARK	thermal conductivity of material at TCHAR
CP	specific heat of a node in ablation material
CPB	specific heat of backup material node
CPC	specific heat values in char specific heat table
CPV	specific heat values in virgin specific heat table
CPX	specific heat values in backup material specific heat tables

<u>Fortran</u>	Description
D	"D" coefficient in matrix, single subscript
DB	"D" coefficient in matrix, double subscript
DELTT	time step in the time step table
DMP.	test used for dumping (DMP = 0 skip dump, DMP = 1.0 start dumping)
DRHØ	local mass flow rate of ablation gas
DT	time step from the time step table in hours
DTS	time step from time step table in seconds
DX	thickness of a node in the ablation material
DXB	thickness of a node in a backup structure material
DXV	variable ablation node thickness $\left(=\frac{VLV}{NP-1}\right)$
DXX	fixed ablation material node thickness $\left(=\frac{\text{VLI}}{\text{NP}-1}\right)$
EMBB	emissivity of back surface of each material in backup
EMC	char material emissivity
EMFB	emissivity of front surface of each material in backup
EMV	virgin material emissivity
EMX	emissivity of front surface of ablation material
END	code word for plot routine
ERRI	
ERR2	Control numbers for printing error statements when an input
ERR3	or calculational mistake is made
ERR4	

<u>Fortran</u>	<u>Description</u>
fbl ø w	blowing efficiency in reducing convective heating
fcønv	factor to correct convective heating rate for various body locations
FENV	emissivity - view factor product to cabin interior
FRAD	factor to correct radiative heating rate for various body locations
FTEST	test to determine mode of heat transfer into front surface of backup materials
FV	view factor for external environment
G	defined by Fortran statement
GAPX	gap width between backup materials
H	film coefficient between backup materials
H300	enthalpy of air at 300° K
HEAD	any 72 alphanumeric characters used to identify problems being run — printed at top of first page of output
HEADNG	any 72 alphanumeric characters used to identify each input section
HENV	film coefficient to cabin environment
HTX	total enthalpy
HV	heat of degradation of virgin material
HW	wall enthalpy computed from enthalpy - temperature table
HX	enthalpy values in enthalpy table
IEM	test used to determine if front surface is virgin or char for using proper emissivity
IPRC	variable print frequency in time-step table
IPRCT	present print control number

Fortran	Description
IR	test to determine if node temperature is greater than TABL
IRl	test used in determining node density at TX1 temperature
TR2	test used in determining node density at TX2 temperature
NCASE	number of problems to be run
NCPB	number of points in each backup material specific heat table
NCPC	number of points in char specific heat temperature table
NCPV	number of points in virgin specific heat temperature table
NKC	number of points in char thermal conductivity — temperature table
NKPB	number of points in each backup material thermal conductivity table
NKV	number of points in virgin thermal conductivity temperature table
NMB	number of materials in backup structure
NP	number of node points in ablation material
NPBS	total number of node points in backup structure
NPF	total number of points in heat shield structure (NP + NPBS)
NPL ∲ T	output plot control number
NPM	number of nodes per material in backup
NHP	number of points in enthalpy - temperature table
NPTT	number of points in time-step table
NREC	number of points in surface recession — temperature or time table
NTRAPT	number of points in trajectory input table

Fortran	Description
NXA	
NXB	
NXC	dummy indexes for subroutine Save
NXD	
NXE	
QBLØCK	amount of convective heat blocked due to mass injection into boundary layer
QC Ø N	trajectory table convective heating rates
Q cø nx	cold wall convective heat rate at present time step
QHW	hot wall convective heat rate without blowing
QIN	net heat flux into front surface
QLØSS	boundary condition for heat transfer to cabin interior
Q ØXID	heating rate due to combustion
QRAD	trajectory table radiative heating rates
QRADX	radiative heat flux at present time step
QUIT	code word for plot routine
R	thermal resistance due to conductivity between nodes in the ablation material
RBl	thermal resistance due to conductivity between past and present node in backup material
RB2	thermal resistance due to conductivity between present and forward node in backup material
RНØ	density of an ablation material node
RН ∮ ВХ	density of individual materials in backup
RHØC	mature char material density

Fortran	Description
RH ∮ V	virgin ablation material density
RH Ø Yl	density of node at past time step
RHØY2	density of node at present time step
S	thermal capacity of a node in the ablation material
SD Ø T	surface recession rate
SAVEIT	depth of 1060 isotherm at any given time
SAVEXX	time corresponding to maximum depth of 1460 isotherm
SAVX	time corresponding to maximum depth of 1060 isotherm
SAVYl	surface recession depth at maximum 1060 isotherm depth
SAVY2	bondline temperature at maximum 1060 isotherm depth
SAVY3	term that will contain maximum depth of 1060 isotherm
SAVY4	depth of 1460 isotherm at maximum 1060 isotherm depth
SAVYlX	surface recession depth at maximum 1460 isotherm depth
SAVY2X	bondline temperature at maximum 1460 isotherm depth
SAVY3X	depth of 1060 isotherm at maximum 1460 isotherm depth
·SAVY4X	term that will contain maximum depth of 1460 isotherm
SR	surface recession values in surface recession table
T	present time
TABL	temperature at which ablation starts
TCHAR	temperature at which ablation stops
TCP	temperature values in backup material specific heat tables
TCPC	temperature values in char specific heat table
TCPV	temperature values in virgin specific heat table

<u>Fortran</u>	Description
TEMDI	arbitrary initial temperature distribution values
TEMPI	constant initial temperature distribution value
TENV	interior cabin temperature
TEST2	test to determine proper heat shield initial temperature distribution
TDMP	time to start dumping or printing information used in check- out of program (sets DMP = 1.0)
TIME	trajectory table time values
TINT	starting time of problem
TITLE	control card used for reading in new data for successive problems
TKC	temperature values in char thermal conductivity table
TKV	temperature values in virgin thermal conductivity table
TL	total thickness of heat shield structure (VL + BL)
TLIM	time limit of problem
TREC	surface temperature or time at which char removal is to start
TS	temperature or time values in surface recession table
TTABLE	time values in time-step table
TTUL	equals TUL if VPT = 0 or equals TX2 if VPT = 1 - used in computing char properties
TUL	maximum value of TX1 and TX2
TULl	maximum TX1 values - used in computing gas ablation rate
TUL2	maximum TX2 values - used in computing gas ablation rate
TV	sink temperature of external environment
TW	temperature values in enthalpy table

Fortran	<u>Description</u>
TX1	temperature of nodes at past time step
TX2	temperature of nodes at present time step
TX2C	temperature at fixed locations in ablation material as defined by XC
TX2T	temporary storage of TX2 temperatures for computing thermal properties
TXK	temperature values in backup material thermal conductivity tables
TX Ø	initial temperature at front surface of heat shield for computing linear temperature gradient
TY	temperature distribution at forward time step
VEL	trajectory table velocity values
VELX	trajectory velocity at present time step
VL	initial virgin material thickness
VLI	initial ablation material thickness
VLTEM	value of 1060 isotherm depth from previous time step
VLV	variable ablation material thickness
VPT	test to determine if properties are irreversible with temperature
WEKEEP	depth of 1460 isotherm at any time
XBM	thickness of individual materials in backup
XC	fixed location of nodes in the ablation material
XI	node number
XIDNT	any 72 alphanumeric characters to identify each material
XK	thermal conductivity values in backup material thermal conductivity table

Fortran	Description
XKB	thermal conductivity of backup material node
XKC	thermal conductivity in char thermal conductivity table
XKV	thermal conductivity value in virgin thermal conductivity table
xløst	amount of solid ablation material lost in a time step due to surface movement
XLSTI	distance from original surface to present front surface lo- cation, inches
XLSTV	distance from original surface to present front surface lo- cation, feet
XMDC	mass loss rate of char
XMDG	mass gas ablation rate due to pyrolysis of virgin material
XMDØ	mass flux rate of oxygen to surface
XMDT	total ablation rate
XNP	number of nodes in ablation material
XNPM	number of nodes per backup material
xpl ø t	time to be written on tape and plotted
xv	location of nodes in variable ablation material thickness
YK	thermal conductivity of a node in ablation material
YPLØTI	recession depth to be written on tape and plotted
YPLØT2	bondline temperature to be written on tape and plotted
YPLØT3	1060 isotherm depth to be written on tape and plotted
YPL Ø T4	1460 isotherm depth to be written on tape and plotted
ZZZ	ratio to determine when the limiting value of heat blockage has been reached

APPENDIX D

GENERAL FLOW CHART

TABLE I .- SAMPLE PROBLEM INPUT

(a) Coding sheet

										THE RESIDENCE PROPERTY SECURE AS ASSESSED.	and the second s
gea 1 75									ing and a second second		1. 4 ×
		an tr					4 4 4 4				
TYP	ICAL	CHARRIN	S ABI	LATOR -	T.E.S.7	CASE	4/6/	65 <u>D</u> B	NALD	M. CUR	KY.
+600.0	+00	+0.0	+00	2	i.	•		ر دا میافیدند. میاندندگانداند. دادها	والمطاعلة والالا		
+0.0			+00	1.0.0							
+600.0			+00	100		.1	•	خد المدين المدينة			
					tarke t	4		3. a. <u>a. a. a. a. a.</u> a.			
41.0	+00	+1.0	+00	سائل المستدر دست	i Albacia.	التفار فالا فالتقابية للا		سنسك فسلا عطستان وسيدو			_1
	land the mark of	ا الساينين	4. 4. 4	وريايين المرافسين رواني	ا الواميات ب	المحاصلات	ا ب ب بالله	الغا على فالمانية المانية			
		CHARRING.	ABL	AM WEETA	T eri	AL PRO	PERTIE	داد المستشبطينية أوافح	الملية والملك		
		+1460.0						+20.0			
40.65		+0.75	400	+129,0				+250.0			
+1:0		10.0	400	+0.12		+0.45	400	40.070	, <u>700</u>	70.43	+00
3.1	. 	2 9		2 2				منط بناه المام			
+1460.0			+00	41.0		+0.12			فستقسمت مياد	 	
+1460.9	400	+0.43	400	+1.0		40.43				40 065	<u> </u>
+360.0			400	† 460.0	+00						
+660.0	+00		400	4760.p	+00			+860.0	Igo	10.070	T 700
		to.069	400	+1060.0				TII		10.10	<u> </u>
+360.0	700	40.43	+00 -04	+1100.0	+00 +00	49. o	+00 -04	2 .d.,	Lake de Arriva		
40.0	TOO	19.0	-07	+600.0	TOU	212.0	-04	For Product	3 4 S. 4		is and the comment of supplementations
	-0176	CTERY -	0=95	BTU/SEC	- (DE	+		ستقدر فرواهم فالماط	ئىدىقى شارىكار سى ئادىرى		an Cara () . La annua
2	WW 40	~ 1 MN1	7-73	2121366	ידנ	•				للسية بالمتنطق والمساسية والمادات ال	د استخداد استهمیشهدادانده است. ا
10.0	+00	+95.0	400	40.0	+00	+2.92	5 +04			التسلمان ومسلا يتقد فاروار	and the second s
40.0	700	, ,,, ,	, , ,	, • • •	100	/6	- 141	1 .1 .		خيره في فيستري الرابي	للمداء مراجاه المطلبيقية فرادا الراجا

```
+00 +95.0
                   +00 +0.0
                              +00 +2.925
                                         404
      3 +0.1
                   400
+3.0 +00
  BACKUP MATERIAL
                       +460.0 +0.065
+360.0 +00 +0.065
                                         +00 +560.0 +00 +0.0655 +00
+660.0
        +00 +0.066
                   400
                              +00 +0.0672
                                         too +860.0 , too to.0684 too
                      +1060.0 +00 +0.07
                                         too +1160.0 too to.07 too
+960.0 +00 +0.069
                   400
                                         400
+360.0 +00 +0.43
                      +1100.0 +00
+34.0 +00 +0.1
                   400
                      to.9 +0.9
                                         400
                                               +0.0 +00 +0.0
                   400
                       +0.0
                              +00: +0. D
                                         400
                                                HEAT TRANSFER TO CABIN ENVIRONENT - HENVEO.O
+560.0 +00 +0.0
                   +00 +0.0
                              400 to.0
                                         +00
 INITIAL TEMPERATURE IS CONSTANT
to. 0 +00 +530.0
                   too +530.0 +00
  42
40.0
                   400 4342.9
        too to.0
                              1. expt act 0.0041 + 00+
                              too +3000.0 +00 +978.0
                                                    too +3600.0 +00
        +00 +2400.0 +00 +791.0
+1113.0 +00 +4000.0 +00 +1200.0 +00 +4224.0 +00 +1300.0
                                                    +00 +4486.0
+1400.0 to0 +4723.0 to0 +1500.0 to0 +4936.0 to0 +1600.0 to0 +5127.0 to0
41700.0 too +5299.0 too +1800.0 too +5454.0 too +1900.0 too +5596.0 too
    Elle 1.
```

```
+2000.0 +00 +5728.0 +00 +2100.0 +00 +5851.0 +00 +2200.0 +00 +5968.0 +00
1 + 2300.0 +00 +6078.0 +00 +2400.0 +00 +6186.0 +00 +2500.0 +00 +6291.0 +00
            +6395.0 +00 +2700.0 +00 +6497.0 +00 +2800.0 +00 +6597.0 +00
 +2600.0 +00
 42900.0 400
            +6699.0 +00 +3000.0 +00 +6805.0 +00 +3100.0 +00 +6918.0 +00
            +7050.0 +00 +3300.0 +00 +7175.0 +00 +3400.0 +00 +7350.0 +00
 +3200.0 +00
                        +3600.0 +00 +7630-0 +00 +3700.0 +00 +7800.0 +00
 +3500·0 +00
             +7480.0 +00
            47970.0 too +3900.0 too +8120.0 +00 +4000.0 too +8300.0 +00
 +41 00 0 +00 +8500.0 +00 +4200.0 +00 +8700.0 +00 +4300.0 +00 +8850.0 +00
+4400.0 +00 +9000.0 +00 +4500.0 +00 +9150.0 +00 +4600.0 +00 +9270.0 +00
1 -
$ :
```

.....

TABLE I. - SAMPLE PROBLEM INPUT

(b) Fortran data card listing

```
1 TYPICAL CHARRING ARLAIDR - TEST CASE - 4/6/65
                                                       DONALD M. CURPY
+0000011
       U•9+ 00+
                    +00
                             2
                                  1
        +111 +11.1
+11.0
                    +110
                           100
        +00 +0.1
+6110 • ti
                    101
                           100
+1.U
        +(1) +1.0
                    +00
   TYPICAL CHARRING ABLATION MATERIAL PROPERTIES
+1060.0 +00 +1460.0 +00 +0.0
                                 +00 +34.0
                                             +00 +20.0
                                                          +00 +0.00
                                                                      +00
+11.05
        +09 +0.75 ++00 +129.06 +00 +1.50
                                             +00 +250.0
                                                         +00 +0.0
                                                                      +00
        +00 +0.0
                                                          +00 +0.43
+1.0
                    +00 +0.12
                                 +00 +0.43
                                             +00 +0.070
                                                                      +00
  ٦1
        2
                      2
+1460.0 +00 +0.12
                                             +00
                    +00 +1.0
                                 +04 +0.12
+1460.0 +00 +0.43
                    +00 +1.0
                                 +04 +0.43
                                             +00
        +00 +11.065
                                 +00 +0.065
                                             +00 +560.0
                                                         +00 +0.0655 +00
+360.0
                    +00 +460.0
+060.0
        +00 +0.060
                    +00 +760.0
                                 +00 +0.0672 +00 +860.0 +00 +0.0684 +00
+960.0 +00 +0.069
                    +un +1060.0 +un +0.070
                                             +00 +1160.0 +00 +0.070 +00.
+360 • u0 +00 +0 • 43.
                    +00 +1100.0 +00 +0.43
                                             +00
        +00 +9.0
                    -04 +600.0 +00 +9.0
                                             -04
+ ( , ()
  NO TRAJECTURY - 0=95 BILL/SEC-SOFT
        +80 +95.0
                    +00 +0.0
                                 +00 +2.925
                                             +04
4 (I a ()
+600•0 +00 +95•0
                    +00 +0.0
                                 +00 +2.925
                                             +04
        3 +0.1
   1
                    +110
        +110
+5.0
   y
  BACKUP MATERIAL
                                 0.1 INCHES THICK
        +01 +0.065
                                 +00 +0.065
                                             +00 +560.0 +00 +0.0655 +00
+360.0
                    +00 +460.0
                                 +00 +0.0672 +00 +860.0 +00 +0.0684 +00
+05000
        +00 +0.066
                    +00 +760.0
                                             +00 +1160.0 +00 +0.07 .+00
+960.0
        +(10 +1: 064
                    +00 +1060.0 +00 +0.07
+360.00 +00 +0.43
                    +00 +1100.0 +00 +0.43
                                             +00
+34.0
        +00 +0.1
                    +00 +0.9
                                 +00 +0.9
                                             +00
                                 +00 +0.0
+11.0
        +09 +0.0
                    +00 +0.0
                                             +00
HEAT TRANSFER TO CAPIN ENVIRONMENT - HENV=0.0
+560.0 +00 +0.00
                                 +00 + 0.0 + 00
                   __+un_+u_•0
 INITIAL TEMPERATURE IS CONSTANT
        +00 +530.0 +00 +530.0 +00
+11.0
  42
+0.0
        +00 +0.0
                    +00 +342.9 +00 +1400.0 +00 +449.7 +00 +1800.0 +00
+617.2 +00 +2400.0 +00 +791.0 +00 +3000.0 +00 +978.0 +00 +3600.0 +00
+1113.0 +09 +4000.0 +00 +1200.0 +00 +4224.0 +00 +1300.0 +00 +4486.0 +00
+1400.0 +00 +4723.0 +00 +1500.0 +00 +4936.0 +00 +1600.0 +00 +5127.0 +00
+1700.0 +00 +5299.0 +00 +1800.0 +00 +5454.0 +00 +1900.0 +00 +5596.0 +00
+2000.0 +00 +5728.0 +00 +2100.0 +00 +5851.0 +00 +2200.0 +00 +5968.0 +00
+23U0.0 +U0 +c078.0 +U0 +2400.0 +O0 +6186.0 +U0 +2500.0 +O0 +6291.0 +O0
+26UA.A +UA +6395.A +UA +27OA.A +OA +6497.A +OA +28OA.A +OA +6597.A +OA
+2°VA.A +VA +E699.A +VA +3ADA.A +DA +6805.A +DA +310A.A +OA +6918.A +OA
```

```
+3200.0
         +00+7050.0
+00+7480.0
                                   +00+7175.0
                      +00+3500.0
                                                 +80+3400.0
                                                              +00+7350:0
                                                                           +00
                                                 +00+3790.0
+3500.0
                                                              +00+7800.0
                                                                           +00
                      +00+3600.0
                                   +00+7630.0
+3800+0
         +07+7470.0
                      +00+3900.0
                                    +00+8120.0
                                                +00+4000.0
                                                              +00+8300.0
                                                                           +00
+4100.0
         +00+8500.0
                                                 +00+4300.0
                                                              +00+8850.0
                      +00+4200.0
                                    +(10+8700.0
                                                                           +00
+4400.0
         +01+9600.0
                                                              +00+9270.00 +00
                      +00+4500.0
                                    +00+9150.0
                                                 +00+4600.0
```

TABLE II. - SAMPLE PROBLEM OUTPUT

TYPICAL CHARRING ABLATOR - TEST CASE - 4/6/65 __DONALD M. CURRY

NPUT DATA.			······································	
		•		
IME LIMIT=6.000	DOE 02 INITIAL T	IME=O. NPTT=	2	
TIME O•	TIME STEP 1.0000E-01	PRINT CONTROL		
6.0000E 02	1.0000E-01	100		
CONV= 1.00000E	00 FRAD= 1.0000	DE 00		e e e sema e h e e e e e e e e e e e e e e e e e
TYPICAL CHA	RRING ABLATION MATE	RIAL PROPERTIES		
	03 TCHAR= 1.46000		RHOV= 3.40000E 01	RHOC= 2.00000E 01
BLOW= 0. HV= 2.50000E HARC= 4.30000E	02 VPT= 0.	E-01 EMC= 7.50000E-01 FV= 1.00000E 00 E-02 ABLC= 4.30000E-01	TV= 0.	VL= 1.50000E 00 CHARK= 1.20000E-01
NP= 31 NKC	= 2 NCPC= 2	NKV= 9 NCPV= 2	NREC= 2	and the second of the second o
	VIR	GIN MATERIAL		
	THERMAL		SPECIFIC	
TEMPERATURE	CONDUCTIVITY	TEMPERATURE 3.60000E 02	HEAT 4.30000E-01	
3.60000E 02 4.60000E 02	6.50000E-02 6.50000E-02	1.10000E 03		
5.60000E 02	6.55000E-02			
6.60000E 02	6.60000E-02			
7.60000E 02	6.72000E-02			
8.60000E 02	6.84000E-02	·		
9.60000E 02	6.90000E-02			
1.16000E 03	7.00000E-02 7.00000E-02			
1.103000 03	14000000 02	n / m-		
	CH	AR MATERIAL		
	THERMAL		SPECIFIC	
TEMPERATURE	CONDUCTIVITY"	TEMPERATURE	HEAT	
.1.46000E 03	1.20000E-01	1.46000E 03	4.30000E-01	
1.00000E 04	1.20000E-01	1.000000 04	4.30000E-01	
	SURFACE	RECESSION TABLE		
	TIME	SR - IN/SEC	graphical S. S	- No. 1 common
	0. 6.00000E 0	9.00000E-04 2 9.00000E-04		
	0.000000	2 7.0000000-04		
NO TRAJECTO	RY - 0=95 BTU/SEC-S	QFT	propose terminal statistics () - Natific () = 0.	s general de de
NO. OF TRAJECT	ORY POINTS = 2	1999		

0. 6.00000E 02		Q RADIATIV	2.92500E	04 04		
DDDDED	TIES OF BACKUP	CTDUCTURE				
PROPER	ITES OF BACKUP	SIRUCIURE				
NO OF WATER!	ALC IN DACK 115	CULTURA I				
TOTAL NUMBER	ALS IN BACK-UP OF NODES IN BAC BACK-UP SHIELD=	K-UP SHIELD=				
BACKUP MATERIA	AL	0.1 INCHES	гніск			
•						
	THERMAL			SPÉCIFIC		
TEMPERATURE	CONDUCTIVITY		TEMPERATURE	SPECIFIC HEAT		
3.60000E 02	6.50000E-02		3.60000F 02	HEAT 4.30000E-01		
4.60000F 02	6.5C000E-02		1.10000E 03	4.30000E-01		
5.60000E 02	6.55000E-02					
6.60000E 02	6.60000E-02		W-1			
7.60000E 02	6.72000E-02					
8.60000E 02	6.84000E-02					
	6.9000UE-02					
1.06000t 03	7.0000E-02					
1.16000E 03	7.00000E-02					
MATERIAL	DENSITY	THICKNESS	EMISSI FRONT		NODES/MATERIAL	
1	3.4000E 01	1.0000E-01	9.0000E-01	9.0000E-01	3.0000E 00	
Topique de A Territorio della						
ADDITIONAL DA	TA FOR INDIVIDU	AL MATERIALS	IN BACKUP STRUCT	URE		
	AL FILM COE		GAP THICKNESS		BTEST O	
			ss.			
HEAT TKANSFER	TU CAHIN ENVIRO	NMENT - HENV=	0.0			
TEMPERATURE=	5.60000E 02	FILM COEFFICI	ENT= 0.	VIEW FACTO)R= 0.	Q LOST=

TEMPERATURE DISTRIBUTION IN HEAT SHIELD IS UNIFORM AND EQUAL TO 5.3000E 02

DUTPUT DATA.

TIME= 9.90000E 00 QCONVECTIVE= 9.50000E 01 QRADIATIVE= 0. VELOCITY= 2.92500E 04

GAS ABLATION RATE= 0. CHAR ABLATION RATE= 5.40000E 00 TOTAL ABLATION RATE= 5.40000E 00

RECESSION DEPTH= 9.00000E-03 QHOT WALL= 8.89893E 01

TEMPERATURE DISTRIBUTION IN HEAT SHIELD AT THE END OF THE TIME STEP, T= 1.00000E 01 SECONDS

TEMPERATURE DISTRIBUTION IN THE ABLATING MATERIAL

						-, -	. •	
4.25564E 03 2.7012	9E 03	1.19740E 0	3 6.43320E	02	5.43814E	02	5.31490E	02
5.30126E 02 5.3000	7E 02	5.30000E 0	2 5.29999E	02	5.30000E	02	5.30000E	02
5.30000E 02 5.3000	0E 02	5.29999E 0	5.30000E	02	5.30000E	02	5.30000E	02
5.30000E 02 5.3000	0E 02	5.30000E 0	5.30000E	02	5.30000E	02 .	5.30000E	02
5.30000E 02 5.3000	0E 02	5.30000E 0	5.29999E	02	5.30000E	02	5.30000E	02
5.29999E 02								

TEMPERATURE DISTRIBUTION IN THE BACK-UP STRUCTURE

5.29999E 02 5.30000E 02 5.30000E 02

TIME= 1.9900UE 01 QCUNVECTIVE= 9.50000E 01 QRADIATIVE= 0. VELOCITY= 2.92500E 04
GAS ABLATION RATE= 0. CHAR ABLATION RATE= 5.40000E 00 TOTAL ABLATION RATE= 5.40000E 00
RECESSION DEPTH= 01.80000E-02 QHOT WALL= 8.89148E 01

TEMPERATURE DISTRIBUTION IN HEAT SHIELD AT THE END OF THE TIME STEP, T= 2.00000E 01 SECONDS

TEMPERATURE DISTRIBUTION IN THE ABLATING MATERIAL

4.26944E 03	3.15689E 03	1.77750E 03	1.02157E 03	6.89430E 02	5.66334E 02
5.37192F 02	5.31229E 02	5.30183E 02	5.30023E 02	5.30002E 02	5.30000E 02
5.29999E 02	5.29999E 02	5,29999E_02	5.29999E 02	5.29999E 02	5.29999E 02
5.29999E 02					
5.29999E U2	5.29999E 02				
5.29999F 02					

TEMPERATURE DISTRIBUTION IN THE BACK-UP, STRUCTURE

5.29999E 02 5.29999E 02 5.29999E 02

TIME= 2.99000E 01 QCONVECTIVE= 9.50000E 01 QRADIATIVE= 0. VELOCITY= 2.92500E 04

GAS ABLATION RATE= 4.04922E 00 CHAR ABLATION RATE= 5.40000E 00 TOTAL ABLATION RATE= 9.44922E 00

RECESSION DEPTH= 2.70000E-02 QHOT WALL= 8.87279E 01

Figure 1.- Radiation temperature approximation error.

Figure 2.- Schematic diagram of charring ablator thermal protection system.

Figure 3.- Thermogravimetric data for typical charring ablation material

Figure 4.- Charring material property variation used as input to STAB II.

Figure 5. - Comparison of temperature histories for nonablating steel slab (pure conduction).

Figure 6.- Comparison of temperature histories for moving boundary model.

Figure 7.- Comparison of temperature histories for typical charring ablator.

Figure 8. - Plot program surface recession curve from typical charring ablator test case.

Figure 9. - Plot program bondline temperature curve from typical charring ablator test case.

Figure 10. - Plot program isotherm curves from typical charring ablator test case.